1: Borgo C, Cesaro L, Hirota T, Kuwata K, D'Amore C, Ruppert T, Blatnik R, Salvi M, Pinna LA. Comparing the efficacy and selectivity of Ck2 inhibitors. A phosphoproteomics approach. Eur J Med Chem. 2021 Mar 15;214:113217. doi: 10.1016/j.ejmech.2021.113217. Epub 2021 Jan 27. PMID: 33548633.
2: Ogata A, Yamada T, Hattori S, Ikenuma H, Abe J, Tada M, Ichise M, Suzuki M, Ito K, Kato T, Amaike K, Hirota T, Kakita A, Itami K, Kimura Y. Development of a novel PET ligand, [11C]GO289 targeting CK2 expressed in the brain. Bioorg Med Chem Lett. 2023 Jun 15;90:129327. doi: 10.1016/j.bmcl.2023.129327. Epub 2023 May 13. PMID: 37187253.
3: Oshima T, Niwa Y, Kuwata K, Srivastava A, Hyoda T, Tsuchiya Y, Kumagai M, Tsuyuguchi M, Tamaru T, Sugiyama A, Ono N, Zolboot N, Aikawa Y, Oishi S, Nonami A, Arai F, Hagihara S, Yamaguchi J, Tama F, Kunisaki Y, Yagita K, Ikeda M, Kinoshita T, Kay SA, Itami K, Hirota T. Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. Sci Adv. 2019 Jan 23;5(1):eaau9060. doi: 10.1126/sciadv.aau9060. PMID: 30746467; PMCID: PMC6357737.
4: Borgo C, D'Amore C, Cesaro L, Itami K, Hirota T, Salvi M, Pinna LA. A N-terminally deleted form of the CK2α' catalytic subunit is sufficient to support cell viability. Biochem Biophys Res Commun. 2020 Oct 20;531(3):409-415. doi: 10.1016/j.bbrc.2020.07.112. Epub 2020 Aug 14. PMID: 32800562.