MedKoo Cat#: 573923 | Name: IFN09681

Description:

WARNING: This product is for research use only, not for human or veterinary use.

IFN09681, also known as Adrenochrome Monoaminoguanidine Mesilate is a chemical compound produced by the oxidation of adrenaline (epinephrine). The derivative carbazochrome is a hemostatic medication. This product has no formal name at the moment. For the convenience of communication, a temporary code name was therefore proposed according to MedKoo Chemical Nomenclature (see web page: https://www.medkoo.com/page/naming).

Chemical Structure

IFN09681
IFN09681
CAS#4009-68-1 (mesylate)

Theoretical Analysis

MedKoo Cat#: 573923

Name: IFN09681

CAS#: 4009-68-1 (mesylate)

Chemical Formula: C11H15N5O5S

Exact Mass: 329.0794

Molecular Weight: 329.33

Elemental Analysis: C, 40.12; H, 4.59; N, 21.27; O, 24.29; S, 9.73

Price and Availability

Related CAS #
54-06-8 (free base) 4009-68-1 (mesylate)
Synonym
A-Peest, Adchnon S, Adrenochrome guanylhydrazone mesilate, Adrenochrome Monoaminoguanidine Mesilate, Adrenochrome monoguanylhydrazone methanesulfonate, S-Adchnon; IFN 09681; IFN-09681; IFN09681
IUPAC/Chemical Name
5,6-Indoledione, 3-hydroxy-1-methyl-, 5-(amidinohydrazone), monomethanesulfonate (salt)
InChi Key
IGWUYHOAVVECKR-FJMCHERXSA-N
InChi Code
1S/C10H13N5O2.CH4O3S/c1-15-4-9(17)5-2-6(13-14-10(11)12)8(16)3-7(5)15;1-5(2,3)4/h2-3,9,17H,4H2,1H3,(H4,11,12,14);1H3,(H,2,3,4)/b13-6-
SMILES Code
CN1CC(C2=C/C(=N/NC(=[NH2+])N)/C(=O)C=C21)O.CS(=O)(=O)[O-]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 329.33 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Cassagnes LE, Chhour M, Pério P, Sudor J, Gayon R, Ferry G, Boutin JA, Nepveu F, Reybier K. Oxidative stress and neurodegeneration: The possible contribution of quinone reductase 2. Free Radic Biol Med. 2018 May 20;120:56-61. doi: 10.1016/j.freeradbiomed.2018.03.002. Epub 2018 Mar 8. PubMed PMID: 29526807. 2: Prasad A, Kumar A, Matsuoka R, Takahashi A, Fujii R, Sugiura Y, Kikuchi H, Aoyagi S, Aikawa T, Kondo T, Yuasa M, Pospíšil P, Kasai S. Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. PeerJ. 2017 Jul 13;5:e3050. doi: 10.7717/peerj.3050. eCollection 2017. PubMed PMID: 28761775; PubMed Central PMCID: PMC5527980. 3: Sirota TV. [Standardization and regulation of the rate of the superoxide-generating adrenaline autoxidation reaction used for evaluation of pro/antioxidant properties of various materials]. Biomed Khim. 2016 Nov;62(6):650-655. doi: 10.18097/PBMC20166206650. Russian. PubMed PMID: 28026808. 4: Halang P, Toulouse C, Geißel B, Michel B, Flauger B, Müller M, Voegele RT, Stefanski V, Steuber J. Response of Vibrio cholerae to the Catecholamine Hormones Epinephrine and Norepinephrine. J Bacteriol. 2015 Dec;197(24):3769-78. doi: 10.1128/JB.00345-15. Epub 2015 Sep 28. PubMed PMID: 26416829; PubMed Central PMCID: PMC4652048. 5: Cassagnes LE, Perio P, Ferry G, Moulharat N, Antoine M, Gayon R, Boutin JA, Nepveu F, Reybier K. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Free Radic Biol Med. 2015 Dec;89:126-34. doi: 10.1016/j.freeradbiomed.2015.07.150. Epub 2015 Sep 18. PubMed PMID: 26386287.