MedKoo Cat#: 555433 | Name: ORG25543 HCl
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

ORG25543 is a Potent and selective GlyT2 inhibitor (IC50 = 16 nM for hGlyT2).

Chemical Structure

ORG25543 HCl
ORG25543 HCl
CAS#495076-64-7 (HCl)

Theoretical Analysis

MedKoo Cat#: 555433

Name: ORG25543 HCl

CAS#: 495076-64-7 (HCl)

Chemical Formula: C24H33ClN2O4

Exact Mass: 0.0000

Molecular Weight: 448.99

Elemental Analysis: C, 64.20; H, 7.41; Cl, 7.90; N, 6.24; O, 14.25

Price and Availability

Size Price Availability Quantity
10mg USD 425.00
50mg USD 1,450.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
363628-88-0 (free base) 495076-64-7 (HCl)
Synonym
ORG25543 HCl; ORG25543; ORG-25543; ORG 25543;
IUPAC/Chemical Name
N-[[1-(Dimethylamino)cyclopentyl]methyl]-3,5-dimethoxy-4-(phenylmethoxy)benzamide hydrochloride
InChi Key
NIPQJILJYQVZJR-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H32N2O4.ClH/c1-26(2)24(12-8-9-13-24)17-25-23(27)19-14-20(28-3)22(21(15-19)29-4)30-16-18-10-6-5-7-11-18;/h5-7,10-11,14-15H,8-9,12-13,16-17H2,1-4H3,(H,25,27);1H
SMILES Code
O=C(NCC1(N(C)C)CCCC1)C2=CC(OC)=C(OCC3=CC=CC=C3)C(OC)=C2.[H]Cl
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
ORG25543 is a Potent and selective GlyT2 inhibitor (IC50 = 16 nM for hGlyT2).
In vitro activity:
TBD
In vivo activity:
TBD
Solvent mg/mL mM
Solubility
DMSO 44.9 100.00
Water 9.0 20.00
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 448.99 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
TBD
In vitro protocol:
TBD
In vivo protocol:
TBD
1: Chater RC, Quinn AS, Wilson K, Frangos ZJ, Sutton P, Jayakumar S, Cioffi CL, O'Mara ML, Vandenberg RJ. The efficacy of the analgesic GlyT2 inhibitor, ORG25543, is determined by two connected allosteric sites. J Neurochem. 2023 Dec 22. doi: 10.1111/jnc.16028. Epub ahead of print. PMID: 38131125. 2: Wilson BS, Peiser-Oliver J, Gillis A, Evans S, Alamein C, Mostyn SN, Shimmon S, Rawling T, Christie MJ, Vandenberg RJ, Mohammadi SA. Peripheral Administration of Selective Glycine Transporter-2 Inhibitor, Oleoyl-D-Lysine, Reverses Chronic Neuropathic Pain but Not Acute or Inflammatory Pain in Male Mice. J Pharmacol Exp Ther. 2022 Sep;382(3):246-255. doi: 10.1124/jpet.122.001265. Epub 2022 Jul 2. PMID: 35779948. 3: Kuo A, Corradini L, Nicholson JR, Smith MT. Assessment of the Anti-Allodynic and Anti-Hyperalgesic Efficacy of a Glycine Transporter 2 Inhibitor Relative to Pregabalin, Duloxetine and Indomethacin in a Rat Model of Cisplatin-Induced Peripheral Neuropathy. Biomolecules. 2021 Jun 24;11(7):940. doi: 10.3390/biom11070940. PMID: 34202809; PMCID: PMC8301897. 4: Ackermann TM, Höfner G, Wanner KT. Screening for New Inhibitors of Glycine Transporter 1 and 2 by Means of MS Binding Assays. ChemMedChem. 2021 Oct 6;16(19):3094-3104. doi: 10.1002/cmdc.202100408. Epub 2021 Jul 28. PMID: 34174033; PMCID: PMC8518836. 5: Benito-Muñoz C, Perona A, Felipe R, Pérez-Siles G, Núñez E, Aragón C, López- Corcuera B. Structural Determinants of the Neuronal Glycine Transporter 2 for the Selective Inhibitors ALX1393 and ORG25543. ACS Chem Neurosci. 2021 Jun 2;12(11):1860-1872. doi: 10.1021/acschemneuro.0c00602. Epub 2021 May 18. PMID: 34003005; PMCID: PMC8691691. 6: Mohammadzadeh A, Lakatos PP, Balogh M, Zádor F, Karádi DÁ, Zádori ZS, Király K, Galambos AR, Barsi S, Riba P, Benyhe S, Köles L, Tábi T, Szökő É, Harsing LG Jr, Al-Khrasani M. Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int J Mol Sci. 2021 Mar 1;22(5):2479. doi: 10.3390/ijms22052479. PMID: 33804568; PMCID: PMC7957511. 7: Ackermann TM, Allmendinger L, Höfner G, Wanner KT. MS Binding Assays for Glycine Transporter 2 (GlyT2) Employing Org25543 as Reporter Ligand. ChemMedChem. 2021 Jan 8;16(1):199-215. doi: 10.1002/cmdc.202000342. Epub 2020 Sep 10. PMID: 32734692; PMCID: PMC7821181. 8: Mostyn SN, Sarker S, Muthuraman P, Raja A, Shimmon S, Rawling T, Cioffi CL, Vandenberg RJ. Photoswitchable ORG25543 Congener Enables Optical Control of Glycine Transporter 2. ACS Chem Neurosci. 2020 May 6;11(9):1250-1258. doi: 10.1021/acschemneuro.9b00655. Epub 2020 Apr 9. PMID: 32191428; PMCID: PMC7206614. 9: Al-Khrasani M, Mohammadzadeh A, Balogh M, Király K, Barsi S, Hajnal B, Köles L, Zádori ZS, Harsing LG Jr. Glycine transporter inhibitors: A new avenue for managing neuropathic pain. Brain Res Bull. 2019 Oct;152:143-158. doi: 10.1016/j.brainresbull.2019.07.008. Epub 2019 Jul 11. PMID: 31302238. 10: Mostyn SN, Rawling T, Mohammadi S, Shimmon S, Frangos ZJ, Sarker S, Yousuf A, Vetter I, Ryan RM, Christie MJ, Vandenberg RJ. Development of an N-Acyl Amino Acid That Selectively Inhibits the Glycine Transporter 2 To Produce Analgesia in a Rat Model of Chronic Pain. J Med Chem. 2019 Mar 14;62(5):2466-2484. doi: 10.1021/acs.jmedchem.8b01775. Epub 2019 Feb 20. PMID: 30714733; PMCID: PMC6420064. 11: Motoyama N, Morita K, Shiraishi S, Kitayama T, Kanematsu T, Uezono Y, Dohi T. Relief of cancer pain by glycine transporter inhibitors. Anesth Analg. 2014 Oct;119(4):988-995. doi: 10.1213/ANE.0000000000000388. PMID: 25076101. 12: Mingorance-Le Meur A, Ghisdal P, Mullier B, De Ron P, Downey P, Van Der Perren C, Declercq V, Cornelis S, Famelart M, Van Asperen J, Jnoff E, Courade JP. Reversible inhibition of the glycine transporter GlyT2 circumvents acute toxicity while preserving efficacy in the treatment of pain. Br J Pharmacol. 2013 Nov;170(5):1053-63. doi: 10.1111/bph.12343. PMID: 23962079; PMCID: PMC3949653. 13: Apostolides PF, Trussell LO. Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse. J Neurosci. 2013 Mar 13;33(11):4768-81. doi: 10.1523/JNEUROSCI.5555-12.2013. PMID: 23486948; PMCID: PMC3639006. 14: Romei C, Di Prisco S, Raiteri M, Raiteri L. Glycine release provoked by disturbed Na⁺, Na⁺ and Ca²⁺ homeostasis in cerebellar nerve endings: roles of Ca²⁺ channels, Na⁺/Ca²⁺ exchangers and GlyT2 transporter reversal. J Neurochem. 2011 Oct;119(1):50-63. doi: 10.1111/j.1471-4159.2011.07401.x. Epub 2011 Aug 22. PMID: 21790607. 15: Rousseau F, Aubrey KR, Supplisson S. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons. J Neurosci. 2008 Sep 24;28(39):9755-68. doi: 10.1523/JNEUROSCI.0509-08.2008. PMID: 18815261; PMCID: PMC6671229. 16: Morita K, Motoyama N, Kitayama T, Morioka N, Kifune K, Dohi T. Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice. J Pharmacol Exp Ther. 2008 Aug;326(2):633-45. doi: 10.1124/jpet.108.136267. Epub 2008 Apr 30. PMID: 18448867. 17: Luccini E, Romei C, Raiteri L. Glycinergic nerve endings in hippocampus and spinal cord release glycine by different mechanisms in response to identical depolarizing stimuli. J Neurochem. 2008 Jun 1;105(6):2179-89. doi: 10.1111/j.1471-4159.2008.05309.x. PMID: 18298662. 18: Benjamin ER, Skelton J, Hanway D, Olanrewaju S, Pruthi F, Ilyin VI, Lavery D, Victory SF, Valenzano KJ. Validation of a fluorescent imaging plate reader membrane potential assay for high-throughput screening of glycine transporter modulators. J Biomol Screen. 2005 Jun;10(4):365-73. doi: 10.1177/1087057104274090. PMID: 15964938. 19: Huang H, Barakat L, Wang D, Bordey A. Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices. J Physiol. 2004 Nov 1;560(Pt 3):721-36. doi: 10.1113/jphysiol.2004.067801. Epub 2004 Aug 26. PMID: 15331688; PMCID: PMC1665288. 20: Whitehead KJ, Pearce SM, Walker G, Sundaram H, Hill D, Bowery NG. Positive N-methyl-D-aspartate receptor modulation by selective glycine transporter-1 inhibition in the rat dorsal spinal cord in vivo. Neuroscience. 2004;126(2):381-90. doi: 10.1016/j.neuroscience.2004.04.006. PMID: 15207356.