MedKoo Cat#: 330159 | Name: Raltegravir
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Raltegravir, also known as MK-0518, is an antiretroviral drug used to treat HIV infection. Raltegravir is a human immunodeficiency virus (HIV) integrase strand transfer inhibitor (HIV-1 INSTI) with HIV-1 antiviral activity. Raltegravir binds to and inhibits integrase, an HIV enzyme that inserts viral genetic material into the genetic material of the infected human cell. Inhibition of integrase prevents insertion of HIV DNA into the human DNA genome, thus blocking HIV replication. It received approval by the U.S. Food and Drug Administration (FDA) in October 2007, the first of a new class of HIV drugs, the integrase inhibitors, to receive such approval.

Chemical Structure

Raltegravir
Raltegravir
CAS#518048-05-0 (free)

Theoretical Analysis

MedKoo Cat#: 330159

Name: Raltegravir

CAS#: 518048-05-0 (free)

Chemical Formula: C20H21FN6O5

Exact Mass: 444.1557

Molecular Weight: 444.42

Elemental Analysis: C, 54.05; H, 4.76; F, 4.27; N, 18.91; O, 18.00

Price and Availability

Size Price Availability Quantity
100mg USD 250.00 2 weeks
250mg USD 450.00 2 weeks
500mg USD 750.00 2 Weeks
1g USD 1,150.00 2 weeks
Bulk Inquiry
Buy Now
Add to Cart
Synonym
MK0518; MK 0518; MK-0518; Raltegravir; brand name: Isentress
IUPAC/Chemical Name
4-Pyrimidinecarboxamide, N-((4-fluorophenyl)methyl)-1,6-dihydro-5-hydroxy-1-methyl-2-(1-methyl-1-(((5-methyl-1,3,4-oxadiazol-2-yl)carbonyl)amino)ethyl)-6-oxo-
InChi Key
CZFFBEXEKNGXKS-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H21FN6O5/c1-10-25-26-17(32-10)16(30)24-20(2,3)19-23-13(14(28)18(31)27(19)4)15(29)22-9-11-5-7-12(21)8-6-11/h5-8,28H,9H2,1-4H3,(H,22,29)(H,24,30)
SMILES Code
O=C(C(N=C(C(NC(C1=NN=C(C)O1)=O)(C)C)N2C)=C(O)C2=O)NCC3=CC=C(F)C=C3
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Raltegravir is a potent integrase inhibitor for WT and S217Q PFV IN with IC50 of 90 nM and 40 nM in cell-free assays, respectively. It shows greater than 1000-fold selectivity for HIV-1 IN over several related Mg2+-dependent enzyme such as HCV polymerase, HIV reverse transcriptase, HIV RNaseH and human α-, β-, γ-polymerases.
In vitro activity:
Raltegravir treatment of human multiple myeloma cell lines and normal peripheral blood mononuclear cells is associated with decreased cell viability, apoptosis induction, DNA damage accumulation, and alteration of mRNA expression of genes involved in V(D)J recombination and DNA repair. Raltegravir has potential for anti-myeloma effects. Reference: Chem Biol Drug Des. 2023 Apr 24. https://pubmed.ncbi.nlm.nih.gov/37094820/
In vivo activity:
Across all studies analyzed in this literature review, they assessed that dolutegravir and raltegravir treatments reported grade 3/4 adverse events in 0-50% of subjects, few resulted in discontinuation, few were drug related and no deaths were attributed to either drug. These findings suggest that dolutegravir and raltegravir are effective and safe regimens in children and adolescents living with HIV. Reference: J Int AIDS Soc. 2022 Nov;25(11):e25970. https://pubmed.ncbi.nlm.nih.gov/36377082/
Solvent mg/mL mM
Solubility
DMSO 89.0 200.26
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 444.42 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Akcora-Yildiz D, Gonulkirmaz N, Ozkan T, Beksac M, Sunguroglu A. HIV-1 integrase inhibitor raltegravir promotes DNA damage-induced apoptosis in multiple myeloma. Chem Biol Drug Des. 2023 Apr 24. doi: 10.1111/cbdd.14237. Epub ahead of print. PMID: 37094820. 2. Komasaka T, Dressman J. Simulation of oral absorption from non-bioequivalent dosage forms of the salt of raltegravir, a poorly soluble acidic drug, using a physiologically based biopharmaceutical modeling (PBBM) approach. Eur J Pharm Sci. 2021 Feb 1;157:105630. doi: 10.1016/j.ejps.2020.105630. Epub 2020 Oct 26. PMID: 33122010. 3. Townsend CL, O'Rourke J, Milanzi E, Collins IJ, Judd A, Castro H, Vicari M, Jesson J, Leroy V, Renaud F, Penazzato M. Effectiveness and safety of dolutegravir and raltegravir for treating children and adolescents living with HIV: a systematic review. J Int AIDS Soc. 2022 Nov;25(11):e25970. doi: 10.1002/jia2.25970. PMID: 36377082; PMCID: PMC9663860. 4. Santos CRGR, Ferreira IT, Beranger R, Santi JP, Jardim MPB, de Souza HJM. Undetectable proviral DNA and viral RNA levels after raltegravir administration in two cats with natural feline leukemia virus infection. Braz J Vet Med. 2022 Oct 26;44:e003522. doi: 10.29374/2527-2179.bjvm003522. PMID: 36324639; PMCID: PMC9622269.
In vitro protocol:
1. Akcora-Yildiz D, Gonulkirmaz N, Ozkan T, Beksac M, Sunguroglu A. HIV-1 integrase inhibitor raltegravir promotes DNA damage-induced apoptosis in multiple myeloma. Chem Biol Drug Des. 2023 Apr 24. doi: 10.1111/cbdd.14237. Epub ahead of print. PMID: 37094820. 2. Komasaka T, Dressman J. Simulation of oral absorption from non-bioequivalent dosage forms of the salt of raltegravir, a poorly soluble acidic drug, using a physiologically based biopharmaceutical modeling (PBBM) approach. Eur J Pharm Sci. 2021 Feb 1;157:105630. doi: 10.1016/j.ejps.2020.105630. Epub 2020 Oct 26. PMID: 33122010.
In vivo protocol:
1. Townsend CL, O'Rourke J, Milanzi E, Collins IJ, Judd A, Castro H, Vicari M, Jesson J, Leroy V, Renaud F, Penazzato M. Effectiveness and safety of dolutegravir and raltegravir for treating children and adolescents living with HIV: a systematic review. J Int AIDS Soc. 2022 Nov;25(11):e25970. doi: 10.1002/jia2.25970. PMID: 36377082; PMCID: PMC9663860. 2. Santos CRGR, Ferreira IT, Beranger R, Santi JP, Jardim MPB, de Souza HJM. Undetectable proviral DNA and viral RNA levels after raltegravir administration in two cats with natural feline leukemia virus infection. Braz J Vet Med. 2022 Oct 26;44:e003522. doi: 10.29374/2527-2179.bjvm003522. PMID: 36324639; PMCID: PMC9622269.
1: Singleton S, Dieterle C, Walker DJ, Runeberg T, Oswald AS, Rosenqvist G, Robertson L, McCarthy T, Sarkar S, Baptista-Hon D, Hales TG. Activation of μ receptors by SR-17018 through a distinctive mechanism. Neuropharmacology. 2024 Nov 1;258:110093. doi: 10.1016/j.neuropharm.2024.110093. Epub 2024 Jul 25. PMID: 39067665. 2: Guo Y, Yu R, Zhang T, Ren F, Yu Z, Cheng J, Jia H, Shi W, Zhang Y. Synthesis and Biological Evaluation of Novel Biased Mu-Opioid Receptor Agonists. Molecules. 2024 Jun 21;29(13):2961. doi: 10.3390/molecules29132961. PMID: 38998913; PMCID: PMC11243066. 3: Nerurkar A, Nguyen T, Wang S, Bhatt U, Li K, Li Y, Ding P, Seidl FJ, Holan M, Lee J, Widjaja T, Wei ZL, Sadlowski C, Sperandio D, McGee LR, Youngblood B, Schwartz N, Gehlert D, Medina JC. Novel series of tunable µOR modulators with enhanced brain penetration for the treatment of opioid use disorder, pain and neuropsychiatric indications. Bioorg Med Chem Lett. 2023 Aug 15;92:129405. doi: 10.1016/j.bmcl.2023.129405. Epub 2023 Jul 5. PMID: 37414346; PMCID: PMC10529836. 4: Szumiec L, Bugno R, Szumiec L, Przewlocki R. The differential influence of PZM21, a nonrewarding μ-opioid receptor agonist with G protein bias, on behavioural despair and fear response in mice. Behav Brain Res. 2023 Jul 9;449:114466. doi: 10.1016/j.bbr.2023.114466. Epub 2023 May 3. PMID: 37146718. 5: Huang KH, Morato NM, Feng Y, Cooks RG. High-Throughput Diversification of Complex Bioactive Molecules by Accelerated Synthesis in Microdroplets. Angew Chem Int Ed Engl. 2023 May 22;62(22):e202300956. doi: 10.1002/anie.202300956. Epub 2023 Apr 20. PMID: 36941213; PMCID: PMC10182919. 6: Paul B, Sribhashyam S, Majumdar S. Opioid signaling and design of analgesics. Prog Mol Biol Transl Sci. 2023;195:153-176. doi: 10.1016/bs.pmbts.2022.06.017. Epub 2022 Aug 5. PMID: 36707153; PMCID: PMC10325139. 7: Zhuang Y, Wang Y, He B, He X, Zhou XE, Guo S, Rao Q, Yang J, Liu J, Zhou Q, Wang X, Liu M, Liu W, Jiang X, Yang D, Jiang H, Shen J, Melcher K, Chen H, Jiang Y, Cheng X, Wang MW, Xie X, Xu HE. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell. 2022 Nov 10;185(23):4361-4375.e19. doi: 10.1016/j.cell.2022.09.041. PMID: 36368306. 8: Li X, Guo Y, Li J, Yu Z, Cheng J, Ren F, Jia H, Zhang Y, Cui S, Zhang T, Shi W. Discovery and Structural Explorations of G-Protein Biased μ-Opioid Receptor Agonists. ChemMedChem. 2022 Dec 16;17(24):e202200416. doi: 10.1002/cmdc.202200416. Epub 2022 Oct 28. PMID: 36210341. 9: Jung JH, Jang IH, Kim YO, Kim S, Yoon MH, Kim YC. Discovery of pyrazole-1-carboxamide derivatives as novel Gi-biased μ-opioid receptor agonists. Drug Dev Res. 2022 Nov;83(7):1600-1612. doi: 10.1002/ddr.21980. Epub 2022 Sep 20. PMID: 36124859. 10: Zádor F, Király K, Essmat N, Al-Khrasani M. Recent Molecular Insights into Agonist-specific Binding to the Mu-Opioid Receptor. Front Mol Biosci. 2022 Jun 13;9:900547. doi: 10.3389/fmolb.2022.900547. PMID: 35769909; PMCID: PMC9234319. 11: Wang H, Hetzer F, Huang W, Qu Q, Meyerowitz J, Kaindl J, Hübner H, Skiniotis G, Kobilka BK, Gmeiner P. Structure-Based Evolution of G Protein-Biased μ-Opioid Receptor Agonists. Angew Chem Int Ed Engl. 2022 Jun 27;61(26):e202200269. doi: 10.1002/anie.202200269. Epub 2022 Apr 29. PMID: 35385593; PMCID: PMC9322534. 12: Noble F, Marie N. Biased Opioid Ligands: Revolution or Evolution? Front Pain Res (Lausanne). 2021 Sep 24;2:722820. doi: 10.3389/fpain.2021.722820. PMID: 35295469; PMCID: PMC8915667. 13: Kudla L, Bugno R, Podlewska S, Szumiec L, Wiktorowska L, Bojarski AJ, Przewlocki R. Comparison of an Addictive Potential of μ-Opioid Receptor Agonists with G Protein Bias: Behavioral and Molecular Modeling Studies. Pharmaceutics. 2021 Dec 27;14(1):55. doi: 10.3390/pharmaceutics14010055. PMID: 35056950; PMCID: PMC8779292. 14: Stahl EL, Bohn LM. Low Intrinsic Efficacy Alone Cannot Explain the Improved Side Effect Profiles of New Opioid Agonists. Biochemistry. 2022 Sep 20;61(18):1923-1935. doi: 10.1021/acs.biochem.1c00466. Epub 2021 Sep 1. PMID: 34468132; PMCID: PMC8885792. 15: Lee JH, Shon SY, Jeon W, Hong SJ, Ban J, Lee DS. Discovery of μ,δ-Opioid Receptor Dual-Biased Agonists That Overcome the Limitation of Prior Biased Agonists. ACS Pharmacol Transl Sci. 2021 Apr 6;4(3):1149-1160. doi: 10.1021/acsptsci.1c00044. PMID: 34151205; PMCID: PMC8204323. 16: Kuppalli S, Seth R, Orhurhu V, Urits I, Kaye AD, Hunter C, Gulati A, Adekoya P, Kaye AM, Jones MR. Recent Advances in the Treatment of Opioid Use Disorder. Curr Pain Headache Rep. 2021 Mar 11;25(4):23. doi: 10.1007/s11916-021-00941-8. PMID: 33693999. 17: Singleton S, Baptista-Hon DT, Edelsten E, McCaughey KS, Camplisson E, Hales TG. TRV130 partial agonism and capacity to induce anti-nociceptive tolerance revealed through reducing available μ-opioid receptor number. Br J Pharmacol. 2021 Apr;178(8):1855-1868. doi: 10.1111/bph.15409. Epub 2021 Mar 2. PMID: 33555037. 18: Liao S, Tan K, Floyd C, Bong D, Pino MJ Jr, Wu C. Probing biased activation of mu-opioid receptor by the biased agonist PZM21 using all atom molecular dynamics simulation. Life Sci. 2021 Mar 15;269:119026. doi: 10.1016/j.lfs.2021.119026. Epub 2021 Jan 11. PMID: 33444617. 19: Jiang X, Li S, Zhang H, Wang LL. Discovery of potentially biased agonists of mu-opioid receptor (MOR) through molecular docking, pharmacophore modeling, and MD simulation. Comput Biol Chem. 2021 Feb;90:107405. doi: 10.1016/j.compbiolchem.2020.107405. Epub 2020 Nov 1. PMID: 33184004. 20: Podlewska S, Bugno R, Kudla L, Bojarski AJ, Przewlocki R. Molecular Modeling of µ Opioid Receptor Ligands with Various Functional Properties: PZM21, SR-17018, Morphine, and Fentanyl-Simulated Interaction Patterns Confronted with Experimental Data. Molecules. 2020 Oct 12;25(20):4636. doi: 10.3390/molecules25204636. PMID: 33053718; PMCID: PMC7594085.