Synonym
Spiramycin III; Foromacidin C; Foromacidine C; Spiramycin 3;
IUPAC/Chemical Name
(4R,5S,6S,7R,9R,10R,11E,13Z,16R)-6-(((2S,3R,4R,5S,6R)-5-(((2S,4R,5S,6S)-4,5-dihydroxy-4,6-dimethyltetrahydro-2H-pyran-2-yl)oxy)-4-(dimethylamino)-3-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-10-(((2R,5S,6S)-5-(dimethylamino)-6-methyltetrahydro-2H-pyran-2-yl)oxy)-5-methoxy-9,16-dimethyl-2-oxo-7-(2-oxoethyl)oxacyclohexadeca-11,13-dien-4-yl propionate
InChi Key
HSZLKTCKAYXVBX-XNAPUEERSA-N
InChi Code
InChI=1S/C46H78N2O15/c1-13-35(50)60-34-24-36(51)56-27(3)17-15-14-16-18-33(61-37-20-19-32(47(8)9)28(4)57-37)26(2)23-31(21-22-49)42(43(34)55-12)63-45-40(52)39(48(10)11)41(29(5)59-45)62-38-25-46(7,54)44(53)30(6)58-38/h14-16,18,22,26-34,37-45,52-54H,13,17,19-21,23-25H2,1-12H3/b15-14-,18-16+/t26-,27-,28+,29-,30+,31+,32+,33+,34-,37+,38+,39-,40-,41-,42+,43+,44+,45+,46-/m1/s1
SMILES Code
C[C@H]1[C@@H](N(C)C)CC[C@H](O[C@@H]2[C@H](C)C[C@H](CC=O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O[C@@H]4O[C@@H](C)[C@H](O)[C@@](O)(C)C4)[C@H](N(C)C)[C@H]3O)[C@H]([C@H](OC(CC)=O)CC(O[C@@H](C/C=C\C=C\2)C)=O)OC)O1
Purity
Technical grade with activity 900u/mg (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in ethanol
Shelf Life
>1 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
Biological target:
Spiramycin III binds to the 16S ribosomal RNA of the 30S subunit of the bacterial ribosome, which prevents the attachment of amino acids to the elongating peptide chain.
In vitro activity:
Spiramycin has potential to be repurposed as a topical anti-inflammatory treatment. In lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, spiramycin reduced levels of inflammatory markers like nitric oxide, IL-1β, and IL-6. It also inhibited the expression of NO synthase and blocked key signaling pathways involved in inflammation.
Reference: Molecules. 2022 May 17;27(10):3202. https://pubmed.ncbi.nlm.nih.gov/35630676/
In vivo activity:
Spiramycin has potential in anti-obesity treatment. Spiramycin effectively attenuated high fat diet (HFD)-induced obesity and hepatic steatosis by inhibiting adipogenesis in obese mice. HFD-induced obese mice administered spiramycin had substantial decreases in body weight gain, serum leptin levels, adipose tissue mass, and hepatic lipid accumulation. The decreased levels of GPT and GOT in mice serum indicated that spiramycin attenuated hepatic injury caused by HFD.
Reference: PLoS One. 2016 Jul 11;11(7):e0158632. https://pubmed.ncbi.nlm.nih.gov/27398599/
|
Solvent |
mg/mL |
mM |
comments |
Solubility |
Ethanol |
6.0 |
6.67 |
|
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.
Preparing Stock Solutions
The following data is based on the
product
molecular weight
899.12
Batch specific molecular weights may vary
from batch to batch
due to the degree of hydration, which will
affect the solvent
volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass |
1 mg |
5 mg |
10 mg |
1 mM |
1.15 mL |
5.76 mL |
11.51 mL |
5 mM |
0.23 mL |
1.15 mL |
2.3 mL |
10 mM |
0.12 mL |
0.58 mL |
1.15 mL |
50 mM |
0.02 mL |
0.12 mL |
0.23 mL |
Formulation protocol:
1. Yagiz Aghayarov O, Bayar Muluk N, Vejselova Sezer C, Kutlu HM, Cingi C. Evaluation of spiramycin for topical applications: a cell culture study. Eur Rev Med Pharmacol Sci. 2023 Mar;27(2 Suppl):44-50. doi: 10.26355/eurrev_202303_31701. PMID: 36971220.
2. Kang JK, Kang HK, Hyun CG. Anti-Inflammatory Effects of Spiramycin in LPS-Activated RAW 264.7 Macrophages. Molecules. 2022 May 17;27(10):3202. doi: 10.3390/molecules27103202. PMID: 35630676; PMCID: PMC9143090.
3. Kim MO, Ryu HW, Choi JH, Son TH, Oh SR, Lee HS, Yuk HJ, Cho S, Kang JS, Lee CW, Lee J, Lee CK, Hong ST, Lee SU. Anti-Obesity Effects of Spiramycin In Vitro and In Vivo. PLoS One. 2016 Jul 11;11(7):e0158632. doi: 10.1371/journal.pone.0158632. PMID: 27398599; PMCID: PMC4939947.
4. Chew WK, Segarra I, Ambu S, Mak JW. Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob Agents Chemother. 2012 Apr;56(4):1762-8. doi: 10.1128/AAC.05183-11. Epub 2012 Jan 23. PMID: 22271863; PMCID: PMC3318357.
In vitro protocol:
1. Yagiz Aghayarov O, Bayar Muluk N, Vejselova Sezer C, Kutlu HM, Cingi C. Evaluation of spiramycin for topical applications: a cell culture study. Eur Rev Med Pharmacol Sci. 2023 Mar;27(2 Suppl):44-50. doi: 10.26355/eurrev_202303_31701. PMID: 36971220.
2. Kang JK, Kang HK, Hyun CG. Anti-Inflammatory Effects of Spiramycin in LPS-Activated RAW 264.7 Macrophages. Molecules. 2022 May 17;27(10):3202. doi: 10.3390/molecules27103202. PMID: 35630676; PMCID: PMC9143090.
In vivo protocol:
1. Kim MO, Ryu HW, Choi JH, Son TH, Oh SR, Lee HS, Yuk HJ, Cho S, Kang JS, Lee CW, Lee J, Lee CK, Hong ST, Lee SU. Anti-Obesity Effects of Spiramycin In Vitro and In Vivo. PLoS One. 2016 Jul 11;11(7):e0158632. doi: 10.1371/journal.pone.0158632. PMID: 27398599; PMCID: PMC4939947.
2. Chew WK, Segarra I, Ambu S, Mak JW. Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob Agents Chemother. 2012 Apr;56(4):1762-8. doi: 10.1128/AAC.05183-11. Epub 2012 Jan 23. PMID: 22271863; PMCID: PMC3318357.
1: Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. Proc Natl Acad Sci U S A. 1969 Oct;64(2):709-14. doi: 10.1073/pnas.64.2.709. PMID: 5261043; PMCID: PMC223402.
2: Pestka S. Antibiotics as probes of ribosome structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics. Antimicrob Agents Chemother. 1974 Mar;5(3):255-67. doi: 10.1128/AAC.5.3.255. PMID: 4599122; PMCID: PMC428957.
3: Pestka S, Nakagawa A, Omura S. Effect of leucomycins and analogues on binding [14C ]erythromycin to Escherichia coli ribosomes. Antimicrob Agents Chemother. 1974 Nov;6(5):606-12. doi: 10.1128/AAC.6.5.606. PMID: 15825314; PMCID: PMC444701.
4: Kitao C, Ikeda H, Hamada H, Omura S. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XIII. Regulation of spiramycin I 3-hydroxyl acylase formation by glucose, butyrate, and cerulenin. J Antibiot (Tokyo). 1979 Jun;32(6):593-9. doi: 10.7164/antibiotics.32.593. PMID: 468735.
5: Ramu K, Shringarpure S, Cooperwood S, Beale JM, Williams JS. 1H-NMR and 13C-NMR spectral assignments of spiramycins I and III. Pharm Res. 1994 Mar;11(3):458-65. doi: 10.1023/a:1018985625765. PMID: 8008717.
6: Liu L, Saevels J, Louis P, Nelis H, Rico S, Dierick K, Guyomard S, Roets E, Hoogmartens J. Interlaboratory study comparing the microbiological potency of spiramycins I, II and III. J Pharm Biomed Anal. 1999 Jun;20(1-2):217-24. doi: 10.1016/s0731-7085(99)00024-2. PMID: 10704026.
7: Deng Y, Ju Y, Lu Z, Lu F, Yan D, Bie X. Identification of 4″-isovaleryl- spiramycin III produced by Bacillus sp. fmbJ. Arch Microbiol. 2014 Feb;196(2):87-95. doi: 10.1007/s00203-013-0939-x. Epub 2013 Dec 20. PMID: 24356910.
8: Li Z, Hu F, Ye R, Lv H, Zeng J. Influence of Al3+ on the titer of spiramycin and effective components in fermentor. Prep Biochem Biotechnol. 2017 May 28;47(5):481-488. doi: 10.1080/10826068.2017.1292290. Epub 2017 Feb 17. PMID: 28278108.
9: Li XY, Luo YT, Wang YH, Yang ZX, Shang YZ, Guan QX. Anti-inflammatory effect and antihepatoma mechanism of carrimycin. World J Gastroenterol. 2023 Apr 14;29(14):2134-2152. doi: 10.3748/wjg.v29.i14.2134. PMID: 37122599; PMCID: PMC10130968.