MedKoo Cat#: 527059 | Name: Quinocetone
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Quinocetone is an animal growth promoter and Antimicrobial agent. Quinocetone is prohibited in aquatic products due to its significant toxicity and side effects.

Chemical Structure

Quinocetone
Quinocetone
CAS#81810-66-4

Theoretical Analysis

MedKoo Cat#: 527059

Name: Quinocetone

CAS#: 81810-66-4

Chemical Formula: C18H14N2O3

Exact Mass: 306.1004

Molecular Weight: 306.32

Elemental Analysis: C, 70.58; H, 4.61; N, 9.15; O, 15.67

Price and Availability

Size Price Availability Quantity
100mg USD 500.00 2 weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Quinocetone
IUPAC/Chemical Name
1-(3-Methyl-1,4-dioxy-quinoxalin-2-yl)-3-phenyl-propenone
InChi Key
XKBYKZRCBDWLKU-VAWYXSNFSA-N
InChi Code
InChI=1S/C18H14N2O3/c1-13-15(11-12-18(21)14-7-3-2-4-8-14)20(23)17-10-6-5-9-16(17)19(13)22/h2-12H,1H3/b12-11+
SMILES Code
[O-][N+]1=C2C=CC=CC2=[N+]([O-])C(/C=C/C(C3=CC=CC=C3)=O)=C1C
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Quinocetone is a potent synthetic antimicrobial agent that is used for improving the feed efficiency and controlling dysentery in food-producing animals.
In vitro activity:
Although quinocetone promotes growth and improves feed efficiency, its in vitro and in vivo toxicities remain uncertain. This study was conducted to explore the mechanism of quinocetone-induced autophagy in HepG2 cells. CT-treated cells detected by MTT assay, suggested that QCT-triggered autophagy might be a promotion mechanism for cell death. These results suggested that quinocetone-induced autophagy was mediated by AKT/TSC2/p70S6K signaling pathway, and inhibition of autophagy promoted quinocetone-treated cell survival by attenuating apoptosis. Reference: Toxicol Mech Methods. 2016 May;26(4):301-10. https://pubmed.ncbi.nlm.nih.gov/27098396/
In vivo activity:
Quinocetone has been approved and widely used as an animal feed additive in China since 2003. This study showed that QCT-induced cell death was coupled to voltage dependent anion channel 2 (VDAC2) oligomerization. This study revealed that ROS-mediated VDAC2 oligomerization is associated with quinocetone-induced apoptotic cell death. The N-terminal region of VDAC2 is required for quinocetone-induced VDAC2 oligomerization. Reference: Toxicol In Vitro. 2018 Mar;47:195-206. https://pubmed.ncbi.nlm.nih.gov/29229420/

Preparing Stock Solutions

The following data is based on the product molecular weight 306.32 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Dai C, Li B, Zhou Y, Li D, Zhang S, Li H, Xiao X, Tang S. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food Chem Toxicol. 2016 Sep;95:52-63. doi: 10.1016/j.fct.2016.06.025. Epub 2016 Jun 29. PMID: 27375190. 2. Zhang S, Zhang C, Tang S, Deng S, Zhou Y, Dai C, Yang X, Xiao X. AKT/TSC2/p70S6K signaling pathway is involved in quinocetone-induced death-promoting autophagy in HepG2 cells. Toxicol Mech Methods. 2016 May;26(4):301-10. doi: 10.3109/15376516.2016.1172690. Epub 2016 Apr 21. PMID: 27098396. 3. Yang X, Tang S, Li D, Li B, Xiao X. ROS-mediated oligomerization of VDAC2 is associated with quinocetone-induced apoptotic cell death. Toxicol In Vitro. 2018 Mar;47:195-206. doi: 10.1016/j.tiv.2017.12.005. Epub 2017 Dec 8. PMID: 29229420. 4. Zhu X, Huang L, Xu Y, Xie S, Pan Y, Chen D, Liu Z, Yuan Z. Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 Feb;34(2):192-210. doi: 10.1080/19440049.2016.1258121. Epub 2016 Dec 21. PMID: 28001497.
In vitro protocol:
1. Dai C, Li B, Zhou Y, Li D, Zhang S, Li H, Xiao X, Tang S. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food Chem Toxicol. 2016 Sep;95:52-63. doi: 10.1016/j.fct.2016.06.025. Epub 2016 Jun 29. PMID: 27375190. 2. Zhang S, Zhang C, Tang S, Deng S, Zhou Y, Dai C, Yang X, Xiao X. AKT/TSC2/p70S6K signaling pathway is involved in quinocetone-induced death-promoting autophagy in HepG2 cells. Toxicol Mech Methods. 2016 May;26(4):301-10. doi: 10.3109/15376516.2016.1172690. Epub 2016 Apr 21. PMID: 27098396.
In vivo protocol:
1. Yang X, Tang S, Li D, Li B, Xiao X. ROS-mediated oligomerization of VDAC2 is associated with quinocetone-induced apoptotic cell death. Toxicol In Vitro. 2018 Mar;47:195-206. doi: 10.1016/j.tiv.2017.12.005. Epub 2017 Dec 8. PMID: 29229420. 2. Zhu X, Huang L, Xu Y, Xie S, Pan Y, Chen D, Liu Z, Yuan Z. Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 Feb;34(2):192-210. doi: 10.1080/19440049.2016.1258121. Epub 2016 Dec 21. PMID: 28001497.
1: Mei Q, Ma B, Fang Y, Gong Y, Li J, Zhang M. Europium Nanoparticle-Based Lateral Flow Strip Biosensors for the Detection of Quinoxaline Antibiotics and Their Main Metabolites in Fish Feeds and Tissues. Biosensors (Basel). 2024 Jun 4;14(6):292. doi: 10.3390/bios14060292. PMID: 38920596; PMCID: PMC11202277. 2: An H, Li Y, Li Y, Gong S, Zhu Y, Li X, Zhou S, Wu Y. Advances in Metabolism and Metabolic Toxicology of Quinoxaline 1,4-Di-N-oxides. Chem Res Toxicol. 2024 Apr 15;37(4):528-539. doi: 10.1021/acs.chemrestox.4c00019. Epub 2024 Mar 20. PMID: 38507288. 3: Li L, Liu R, Liu L, Guo Z, Zhou T, Yang Y, Yang H, He L. Determination of marker residues of quinoxaline-1,4-di-N-oxides and its prototype identification by liquid chromatography tandem mass spectrometry. Food Chem. 2024 Jun 1;442:138395. doi: 10.1016/j.foodchem.2024.138395. Epub 2024 Jan 9. PMID: 38266409. 4: Dai C, Zhang Q, Shen L, Sharma G, Jiang H, Wang Z, Shen J. Quercetin Attenuates Quinocetone-Induced Cell Apoptosis In Vitro by Activating the P38/Nrf2/HO-1 Pathway and Inhibiting the ROS/Mitochondrial Apoptotic Pathway. Antioxidants (Basel). 2022 Jul 30;11(8):1498. doi: 10.3390/antiox11081498. PMID: 36009217; PMCID: PMC9405464. 5: Cui Z, Wang X, Liao S, Qi M, Zha A, Zuo G, Liao P, Chen Y, Guo C, Tan B. Effects of Medium-Chain Fatty Acid Glycerides on Nutrient Metabolism and Energy Utilization in Weaned Piglets. Front Vet Sci. 2022 Jun 29;9:938888. doi: 10.3389/fvets.2022.938888. PMID: 35847640; PMCID: PMC9277303. 6: Yin Y, Wang F, Yang M, Tan B, Yin Y, Chen J, Yang Z. Lycium barbarum Polysaccharides as Antibiotic Substitutes Improve Growth Performance, Serum Immunity, Antioxidant Status, and Intestinal Health for Weaned Piglets. Front Microbiol. 2022 Feb 25;12:819993. doi: 10.3389/fmicb.2021.819993. PMID: 35281314; PMCID: PMC8914510. 7: Wang F, Yin Y, Yang M, Chen J, Fu C, Huang K. Effects of Combined Supplementation of Macleaya cordata Extract and Benzoic Acid on the Growth Performance, Immune Responses, Antioxidant Capacity, Intestinal Morphology, and Microbial Composition in Weaned Piglets. Front Vet Sci. 2021 Aug 18;8:708597. doi: 10.3389/fvets.2021.708597. PMID: 34490398; PMCID: PMC8416536. 8: Hou L, Liu F, Zhao C, Fan L, Hu H, Yin S. Combination of oxytetracycline and quinocetone synergistically induces hepatotoxicity via generation of reactive oxygen species and activation of mitochondrial pathway. Toxicol Mech Methods. 2022 Jan;32(1):49-57. doi: 10.1080/15376516.2021.1965273. Epub 2021 Sep 22. PMID: 34348565. 9: Luan Y, Zhao J, Han H, Shen J, Tang S, Cheng L. Toxicologic effect and transcriptome analysis for short-term orally dosed enrofloxacin combined with two veterinary antimicrobials on rat liver. Ecotoxicol Environ Saf. 2021 Sep 1;220:112398. doi: 10.1016/j.ecoenv.2021.112398. Epub 2021 Jun 8. PMID: 34116333. 10: Zeng Y, Wang Z, Zou T, Chen J, Li G, Zheng L, Li S, You J. Bacteriophage as an Alternative to Antibiotics Promotes Growth Performance by Regulating Intestinal Inflammation, Intestinal Barrier Function and Gut Microbiota in Weaned Piglets. Front Vet Sci. 2021 Jan 27;8:623899. doi: 10.3389/fvets.2021.623899. PMID: 33585620; PMCID: PMC7874526. 11: Cui Z, Wang X, Hou Z, Liao S, Qi M, Zha A, Yang Z, Zuo G, Liao P, Chen Y, Tan B. Low-Protein Diet Supplemented with Medium-Chain Fatty Acid Glycerides Improves the Growth Performance and Intestinal Function in Post-Weaning Piglets. Animals (Basel). 2020 Oct 12;10(10):1852. doi: 10.3390/ani10101852. PMID: 33053685; PMCID: PMC7601791. 12: Qiu M, Liu C, Tang Q, Zhang Y, Wang H, Zhai B, Xu K, Zhou Y, Qu L, Li Q, Xu J, Bai Y, Hao Z. Distribution and elimination of quinocetone and its major metabolites in Cherry Valley ducks. J Vet Pharmacol Ther. 2019 Sep 6. doi: 10.1111/jvp.12792. Epub ahead of print. PMID: 31490556. 13: Qin L , Ji W , Wang J , Li B , Hu J , Wu X . Effects of dietary supplementation with yeast glycoprotein on growth performance, intestinal mucosal morphology, immune response and colonic microbiota in weaned piglets. Food Funct. 2019 May 22;10(5):2359-2371. doi: 10.1039/c8fo02327a. PMID: 30972390. 14: Yang YJ, Liu XW, Kong XJ, Qin Z, Jiao ZH, Li SH, Li JY. Preparation and Evaluation of Oseltamivir Molecularly Imprinted Polymer Silica Gel as Liquid Chromatography Stationary Phase. Molecules. 2018 Jul 27;23(8):1881. doi: 10.3390/molecules23081881. PMID: 30060497; PMCID: PMC6222414. 15: Yang X, Tang S, Li D, Li B, Xiao X. ROS-mediated oligomerization of VDAC2 is associated with quinocetone-induced apoptotic cell death. Toxicol In Vitro. 2018 Mar;47:195-206. doi: 10.1016/j.tiv.2017.12.005. Epub 2017 Dec 8. PMID: 29229420. 16: Zhang K, Wang C, Wang X, Zheng H, Zhao J, Wang M, Xiao S, Fei C, Zheng W, Zhang L, Xue F. Synthesis, In-Vitro Activity and Metabolic Properties of Quinocetone and Structurally Similar Compounds. Iran J Pharm Res. 2017 Spring;16(2):569-585. PMID: 28979311; PMCID: PMC5603865. 17: Qiu M, Hao Z, Zhang R, Cui L, Wang C, Qu S, Yuan S, Bai Y. Plasma pharmacokinetics of quinocetone in ducks after oral and intravenous administration. J Vet Pharmacol Ther. 2018 Feb;41(1):142-147. doi: 10.1111/jvp.12426. Epub 2017 Jul 20. PMID: 28730638. 18: Yang X, Tang S, Dai C, Li D, Zhang S, Deng S, Zhou Y, Xiao X. Quinocetone induces mitochondrial apoptosis in HepG2 cells through ROS-dependent promotion of VDAC1 oligomerization and suppression of Wnt1/β-catenin signaling pathway. Food Chem Toxicol. 2017 Jul;105:161-176. doi: 10.1016/j.fct.2017.03.039. Epub 2017 Mar 23. PMID: 28343033. 19: Zhu X, Huang L, Xu Y, Xie S, Pan Y, Chen D, Liu Z, Yuan Z. Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 Feb;34(2):192-210. doi: 10.1080/19440049.2016.1258121. Epub 2016 Dec 21. PMID: 28001497. 20: Fu L, Huang T, Wang S, Wang X, Su L, Li C, Zhao Y. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere. 2017 Feb;168:217-222. doi: 10.1016/j.chemosphere.2016.10.043. Epub 2016 Oct 23. PMID: 27783962.