MedKoo Cat#: 529016 | Name: NSC-40738
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

NSC-40738 is potentially for the treatment of sickle cell anemia.

Chemical Structure

NSC-40738
NSC-40738
CAS#67-47-0

Theoretical Analysis

MedKoo Cat#: 529016

Name: NSC-40738

CAS#: 67-47-0

Chemical Formula: C6H6O3

Exact Mass: 126.0317

Molecular Weight: 126.11

Elemental Analysis: C, 57.14; H, 4.80; O, 38.06

Price and Availability

Size Price Availability Quantity
5g USD 250.00 2 Weeks
10g USD 350.00 2 Weeks
25g USD 550.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
5-(Hydroxymethyl)furfural; 5-hydroxy methyl furfural; 5-HMF; 5HMF; 5 HMF; NSC-40738; NSC40738; NSC 40738
IUPAC/Chemical Name
5-(hydroxymethyl)furan-2-carbaldehyde
InChi Key
NOEGNKMFWQHSLB-UHFFFAOYSA-N
InChi Code
InChI=1S/C6H6O3/c7-3-5-1-2-6(4-8)9-5/h1-3,8H,4H2
SMILES Code
O=CC1=CC=C(CO)O1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors.
In vitro activity:
After 5-HMF (5-Hydroxymetylfurfural) treatment for 24 h, the number of living cells decreased to 89.61 ± 0.48, 77.30 ± 0.57, 58.75 ± 0.36, and 19.61 ± 0.40% of the control, respectively. Apoptosis activated through both the death receptor and mitochondrial pathways was confirmed to be the primary mode of HMF-induced cell death. Further analysis revealed that the reactive oxygen species (ROS) levels in GES-1 cells increased 1.7-6.5 fold after exposure to 5-HMF. Reference: J Agric Food Chem. 2022 Mar 30;70(12):3852-3861. https://pubmed.ncbi.nlm.nih.gov/35311281/
In vivo activity:
Twelve male C57BL/6 mice (12-month-old, 38 ± 1 g) were randomly divided into the control group and the 5-HMF (5-Hydroxymethylfurfural) group. The 5-HMF group was treated with 5-HMF (1 mg/kg/day, respiratory exposure) for 12 months, whereas the control group was treated with equal amounts of sterile water. In the 5-HMF group, serum inflammatory factors IL-6, TNF-α, and CRP levels were significantly raised (p < 0.01). Mice in this group had higher frailty scores and significantly reduced grip strength (p < 0.001), slower weight gains, less WVgastrocnemius muscle masses, and lower sarcopenia indices (SI). Reference: Heliyon. 2023 Jan 22;9(2):e13217. https://pubmed.ncbi.nlm.nih.gov/36793951/
Solvent mg/mL mM
Solubility
DMSO 26.0 206.17
Ethanol 2.5 19.82
PBS (pH 7.2) 10.0 79.30
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 126.11 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Qiu Y, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural Exerts Negative Effects on Gastric Mucosal Epithelial Cells by Inducing Oxidative Stress, Apoptosis, and Tight Junction Disruption. J Agric Food Chem. 2022 Mar 30;70(12):3852-3861. doi: 10.1021/acs.jafc.2c00269. Epub 2022 Mar 21. PMID: 35311281. 2. Vijayakumar K, Thirunanasambandham R. 5-Hydroxymethylfurfural inhibits Acinetobacter baumannii biofilms: an in vitro study. Arch Microbiol. 2021 Mar;203(2):673-682. doi: 10.1007/s00203-020-02061-0. Epub 2020 Oct 9. PMID: 33037454. 3. Xu T, Xia R, He F, Dong EH, Shen JM, Xu CC, Ji MH, Xu Q. 5-Hydroxymethylfurfural induces mice frailty through cell senescence-associated sarcopenia caused by chronic inflammation. Heliyon. 2023 Jan 22;9(2):e13217. doi: 10.1016/j.heliyon.2023.e13217. PMID: 36793951; PMCID: PMC9922977. 4. Zhang H, Jiang Z, Shen C, Zou H, Zhang Z, Wang K, Bai R, Kang Y, Ye XY, Xie T. 5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation. Front Cell Dev Biol. 2021 Dec 13;9:782427. doi: 10.3389/fcell.2021.782427. PMID: 34966742; PMCID: PMC8711100.
In vitro protocol:
1. Qiu Y, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural Exerts Negative Effects on Gastric Mucosal Epithelial Cells by Inducing Oxidative Stress, Apoptosis, and Tight Junction Disruption. J Agric Food Chem. 2022 Mar 30;70(12):3852-3861. doi: 10.1021/acs.jafc.2c00269. Epub 2022 Mar 21. PMID: 35311281. 2. Vijayakumar K, Thirunanasambandham R. 5-Hydroxymethylfurfural inhibits Acinetobacter baumannii biofilms: an in vitro study. Arch Microbiol. 2021 Mar;203(2):673-682. doi: 10.1007/s00203-020-02061-0. Epub 2020 Oct 9. PMID: 33037454.
In vivo protocol:
1. Xu T, Xia R, He F, Dong EH, Shen JM, Xu CC, Ji MH, Xu Q. 5-Hydroxymethylfurfural induces mice frailty through cell senescence-associated sarcopenia caused by chronic inflammation. Heliyon. 2023 Jan 22;9(2):e13217. doi: 10.1016/j.heliyon.2023.e13217. PMID: 36793951; PMCID: PMC9922977. 2. Zhang H, Jiang Z, Shen C, Zou H, Zhang Z, Wang K, Bai R, Kang Y, Ye XY, Xie T. 5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation. Front Cell Dev Biol. 2021 Dec 13;9:782427. doi: 10.3389/fcell.2021.782427. PMID: 34966742; PMCID: PMC8711100.
1: Palkovits R. Across the board: Regina Palkovits. ChemSusChem. 2015 Mar;8(5):755-7. doi: 10.1002/cssc.201403431. PubMed PMID: 25641900. 2: Kang ES, Hong YW, Chae da W, Kim B, Kim B, Kim YJ, Cho JK, Kim YG. From lignocellulosic biomass to furans via 5-acetoxymethylfurfural as an alternative to 5-hydroxymethylfurfural. ChemSusChem. 2015 Apr 13;8(7):1179-88. doi: 10.1002/cssc.201403252. PubMed PMID: 25619448. 3: Du E, Diez-Silva M, Kato GJ, Dao M, Suresh S. Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1422-7. doi: 10.1073/pnas.1424111112. PubMed PMID: 25605910; PubMed Central PMCID: PMC4321273. 4: Siankevich S, Fei Z, Yan N, Dyson PJ. Application of Ionic Liquids in the Downstream Processing of Lignocellulosic Biomass. Chimia (Aarau). 2015;69(10):592-6. doi: 10.2533/chimia.2015.592. Review. PubMed PMID: 26598402. 5: Heugebaert TS, Stevens CV, Kappe CO. Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow. ChemSusChem. 2015 May 22;8(10):1648-51. doi: 10.1002/cssc.201403182. PubMed PMID: 25505009. 6: Kwon Y, Birdja YY, Raoufmoghaddam S, Koper MT. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution. ChemSusChem. 2015 May 22;8(10):1745-51. doi: 10.1002/cssc.201500176. PubMed PMID: 25908308. 7: Sowmiah S, Veiros LF, Esperança JM, Rebelo LP, Afonso CA. Organocatalyzed One-Step Synthesis of Functionalized N-Alkyl-Pyridinium Salts from Biomass Derived 5-Hydroxymethylfurfural. Org Lett. 2015 Nov 6;17(21):5244-7. doi: 10.1021/acs.orglett.5b02573. PubMed PMID: 26493742. 8: Zhang J, Li J, Tang Y, Lin L, Long M. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydr Polym. 2015 Oct 5;130:420-8. doi: 10.1016/j.carbpol.2015.05.028. Review. PubMed PMID: 26076643. 9: Esposito D, Antonietti M. Redefining biorefinery: the search for unconventional building blocks for materials. Chem Soc Rev. 2015 Aug 21;44(16):5821-35. doi: 10.1039/c4cs00368c. Review. PubMed PMID: 25907306. 10: Carro J, Ferreira P, Rodríguez L, Prieto A, Serrano A, Balcells B, Ardá A, Jiménez-Barbero J, Gutiérrez A, Ullrich R, Hofrichter M, Martínez AT. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. FEBS J. 2015 Aug;282(16):3218-29. doi: 10.1111/febs.13177. PubMed PMID: 25495853. 11: Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation. Bioresour Technol. 2015 Dec;197:323-8. doi: 10.1016/j.biortech.2015.08.105. PubMed PMID: 26342346. 12: Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S. Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol. 2016 Jan;199:2-12. doi: 10.1016/j.biortech.2015.08.143. Review. PubMed PMID: 26409859. 13: Niquet-Léridon C, Jacolot P, Niamba CN, Grossin N, Boulanger E, Tessier FJ. The rehabilitation of raw and brown butters by the measurement of two of the major Maillard products, N(ε)-carboxymethyl-lysine and 5-hydroxymethylfurfural, with validated chromatographic methods. Food Chem. 2015 Jun 15;177:361-8. doi: 10.1016/j.foodchem.2015.01.011. PubMed PMID: 25660898. 14: Yi G, Teong SP, Zhang Y. The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system. ChemSusChem. 2015 Apr 13;8(7):1151-5. doi: 10.1002/cssc.201500118. PubMed PMID: 25766123. 15: Rückriemen J, Schwarzenbolz U, Adam S, Henle T. Identification and Quantitation of 2-Acetyl-1-pyrroline in Manuka Honey (Leptospermum scoparium). J Agric Food Chem. 2015 Sep 30;63(38):8488-92. doi: 10.1021/acs.jafc.5b03042. PubMed PMID: 26365614. 16: Zhang X, Li N, Lu X, Liu P, Qiao X. Effects of temperature on the quality of black garlic. J Sci Food Agric. 2016 May;96(7):2366-72. doi: 10.1002/jsfa.7351. PubMed PMID: 26212875. 17: Lee SB, Jeong GT. Catalytic Conversion of Chitosan to 5-Hydroxymethylfurfural Under Low Temperature Hydrothermal Process. Appl Biochem Biotechnol. 2015 Jun;176(4):1151-61. doi: 10.1007/s12010-015-1636-9. PubMed PMID: 25926010. 18: Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresour Technol. 2015 Nov;196:250-5. doi: 10.1016/j.biortech.2015.07.097. PubMed PMID: 26247976. 19: Bottari G, Kumalaputri AJ, Krawczyk KK, Feringa BL, Heeres HJ, Barta K. Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural. ChemSusChem. 2015 Apr 24;8(8):1323-7. doi: 10.1002/cssc.201403453. PubMed PMID: 25833148. 20: Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst Eng. 2015 Feb;38(2):207-17. doi: 10.1007/s00449-014-1259-5. PubMed PMID: 25042893.