Synonym
5-Ph-IAA; 5Ph-IAA; 5 Ph-IAA; 5-PhIAA; 5-Ph IAA; 5PhIAA; 5 Ph IAA;
IUPAC/Chemical Name
2-(5-phenyl-1H-indol-3-yl)acetic acid
InChi Key
ACCCWYHBDGKDKN-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H13NO2/c18-16(19)9-13-10-17-15-7-6-12(8-14(13)15)11-4-2-1-3-5-11/h1-8,10,17H,9H2,(H,18,19)
SMILES Code
OC(CC1=CNC2=C1C=C(C=C2)C3=CC=CC=C3)=O
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
|
Solvent |
mg/mL |
mM |
Solubility |
DMSO |
25.1 |
100.00 |
Ethanol |
25.1 |
100.00 |
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.
Preparing Stock Solutions
The following data is based on the
product
molecular weight
251.29
Batch specific molecular weights may vary
from batch to batch
due to the degree of hydration, which will
affect the solvent
volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass |
1 mg |
5 mg |
10 mg |
1 mM |
1.15 mL |
5.76 mL |
11.51 mL |
5 mM |
0.23 mL |
1.15 mL |
2.3 mL |
10 mM |
0.12 mL |
0.58 mL |
1.15 mL |
50 mM |
0.02 mL |
0.12 mL |
0.23 mL |
1: Negishi T, Kitagawa S, Horii N, Tanaka Y, Haruta N, Sugimoto A, Sawa H, Hayashi KI, Harata M, Kanemaki MT. The auxin-inducible degron 2 (AID2) system enables controlled protein knockdown during embryogenesis and development in Caenorhabditis elegans. Genetics. 2022 Feb 4;220(2):iyab218. doi: 10.1093/genetics/iyab218. PMID: 34865044.
2: Hills-Muckey K, Martinez MAQ, Stec N, Hebbar S, Saldanha J, Medwig-Kinney TN, Moore FEQ, Ivanova M, Morao A, Ward JD, Moss EG, Ercan S, Zinovyeva AY, Matus DQ, Hammell CM. An engineered, orthogonal auxin analog/AtTIR1(F79G) pairing improves both specificity and efficacy of the auxin degradation system in Caenorhabditis elegans. Genetics. 2022 Feb 4;220(2):iyab174. doi: 10.1093/genetics/iyab174. PMID: 34739048; PMCID: PMC9097248.
3: Saito Y, Kanemaki MT. Targeted Protein Depletion Using the Auxin-Inducible Degron 2 (AID2) System. Curr Protoc. 2021 Aug;1(8):e219. doi: 10.1002/cpz1.219. PMID: 34370399.
4: Yesbolatova A, Saito Y, Kitamoto N, Makino-Itou H, Ajima R, Nakano R, Nakaoka H, Fukui K, Gamo K, Tominari Y, Takeuchi H, Saga Y, Hayashi KI, Kanemaki MT. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun. 2020 Nov 11;11(1):5701. doi: 10.1038/s41467-020-19532-z. PMID: 33177522; PMCID: PMC7659001.