MedKoo Cat#: 100012 | Name: Aclarubicin HCl
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Aclarubicin, an anthracycline antibiotic, exhibits potent anti-tumor activity in vitro by intercalating into DNA and inhibiting topoisomerase I and II, leading to DNA damage and apoptosis. Studies have shown that aclarubicin effectively inhibits proliferation in various cancer cell lines, including leukemia, breast, and lung cancer, with IC₅₀ values typically in the nanomolar to low micromolar range. Unlike doxorubicin, aclarubicin demonstrates reduced cardiotoxicity and less propensity to induce drug resistance. Additionally, it disrupts transcription by interfering with RNA polymerase II, contributing to its cytotoxic effects. Combination studies suggest synergistic effects with other chemotherapeutics, enhancing apoptosis and DNA damage responses in resistant tumor models.

Chemical Structure

Aclarubicin HCl
Aclarubicin HCl
CAS#75443-99-1 (HCl)

Theoretical Analysis

MedKoo Cat#: 100012

Name: Aclarubicin HCl

CAS#: 75443-99-1 (HCl)

Chemical Formula: C42H54ClNO15

Exact Mass: 847.3200

Molecular Weight: 848.34

Elemental Analysis: C, 59.46; H, 6.42; Cl, 4.18; N, 1.65; O, 28.29

Price and Availability

Size Price Availability Quantity
50mg USD 3,950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Synonym
Aclacinomycin; Aclacinomycin A hydrochloride; Aclarubicin Hydrochloride; Antibiotic MA144A1. Aclacin; Aclacinomycine; Aclacinon; Aclaplastin; Jaclacin. ACM; ACMA. MA144A1
IUPAC/Chemical Name
(1R,2R,4S)-methyl 4-(((2R,5S,6S)-4-(dimethylamino)-5-(((2S,4S,5S,6S)-4-hydroxy-6-methyl-5-(((2R,6S)-6-methyl-5-oxotetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-6-methyltetrahydro-2H-pyran-2-yl)oxy)-2-ethyl-2,5,7-trihydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylate hydrochloride
InChi Key
KUSMIBXCRZTVML-ZRMZNYNWSA-N
InChi Code
InChI=1S/C42H53NO15.ClH/c1-8-42(51)17-28(33-22(35(42)41(50)52-7)14-23-34(38(33)49)37(48)32-21(36(23)47)10-9-11-26(32)45)56-30-15-24(43(5)6)39(19(3)54-30)58-31-16-27(46)40(20(4)55-31)57-29-13-12-25(44)18(2)53-29;/h9-11,14,18-20,24,27-31,35,39-40,45-46,49,51H,8,12-13,15-17H2,1-7H3;1H/t18-,19-,20-,24?,27-,28-,29-,30-,31-,35-,39+,40+,42+;/m0./s1
SMILES Code
O=C([C@H]1[C@@](O)(CC)C[C@H](O[C@H]2CC(N(C)C)[C@H](O[C@H]3C[C@H](O)[C@H](O[C@H]4CCC([C@H](C)O4)=O)[C@H](C)O3)[C@H](C)O2)C5=C(O)C6=C(C(C7=CC=CC(O)=C7C6=O)=O)C=C15)OC.[H]Cl
Appearance
Red solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
       
Product Data
Biological target:
Aclacinomycin A hydrochloride (Aclarubicin hydrochloride) shows discrete specificity for the CTRL (chymotrypsin-like) activity of the 20S proteasome. Aclacinomycin A hydrochloride is also a dual inhibitor of topoisomerase I and II.
In vitro activity:
ACR-induced apoptosis was assessed by caspase-3/7 activity. The caspase-3/7 activity after 6-h ACR treatment was remarkably increased at 0.2 and 0.5 μM in HL-60 cells (0.2 μM, p<0.01; 0.5 μM, p<0.001), and at 0.5 μM in HP100 cells (p<0.001). Caspase-3/7 in HL-60 cells had significant higher activity than that in HP100 cells at 0.2 and 0.5 μM (Figure 2B) (0.2 μM, p<0.001; 0.5 μM, p<0.05). These events were in good agreement with DNA ladder formation induced by ACR. Reference: Anticancer Res. 2019 Jul;39(7):3443-3451. https://pubmed.ncbi.nlm.nih.gov/31262868/
In vivo activity:
TBD
Solvent mg/mL mM
Solubility
DMSO 125.0 147.35
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 848.34 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Mizutani H, Hayashi Y, Hashimoto M, Imai M, Ichimaru Y, Kitamura Y, Ikemura K, Miyazawa D, Ohta K, Ikeda Y, Maeda T, Yoshikawa M, Hiraku Y, Kawanishi S. Oxidative DNA Damage and Apoptosis Induced by Aclarubicin, an Anthracycline: Role of Hydrogen Peroxide and Copper. Anticancer Res. 2019 Jul;39(7):3443-3451. doi: 10.21873/anticanres.13490. PMID: 31262868. 2. Gajek A, Rogalska A, Koceva-Chyła A. Aclarubicin in subtoxic doses reduces doxorubicin cytotoxicity in human non-small cell lung adenocarcinoma (A549) and human hepatocellular carcinoma (HepG2) cells by decreasing DNA damage. Toxicol In Vitro. 2019 Mar;55:140-150. doi: 10.1016/j.tiv.2018.12.015. Epub 2018 Dec 20. PMID: 30579959.
In vitro protocol:
1. Mizutani H, Hayashi Y, Hashimoto M, Imai M, Ichimaru Y, Kitamura Y, Ikemura K, Miyazawa D, Ohta K, Ikeda Y, Maeda T, Yoshikawa M, Hiraku Y, Kawanishi S. Oxidative DNA Damage and Apoptosis Induced by Aclarubicin, an Anthracycline: Role of Hydrogen Peroxide and Copper. Anticancer Res. 2019 Jul;39(7):3443-3451. doi: 10.21873/anticanres.13490. PMID: 31262868. 2. Gajek A, Rogalska A, Koceva-Chyła A. Aclarubicin in subtoxic doses reduces doxorubicin cytotoxicity in human non-small cell lung adenocarcinoma (A549) and human hepatocellular carcinoma (HepG2) cells by decreasing DNA damage. Toxicol In Vitro. 2019 Mar;55:140-150. doi: 10.1016/j.tiv.2018.12.015. Epub 2018 Dec 20. PMID: 30579959.
In vivo protocol:
TBD
1: Dou L, Xu Q, Wang M, Xiao Y, Cheng L, Li H, Huang W, Mei J, Jing Y, Bo J, Liu D, Yu L. Clinical efficacy of decitabine in combination with standard-dose cytarabine, aclarubicin hydrochloride, and granulocyte colony-stimulating factor in the treatment of young patients with newly diagnosed acute myeloid leukemia. Onco Targets Ther. 2019 Jun 28;12:5013-5023. doi: 10.2147/OTT.S200005. PMID: 31303761; PMCID: PMC6605041. 2: Kawashima O, Kurihara T, Kamiyoshihara M, Sakata S, Ishikawa S, Morishita Y. Management of malignant pericardial effusion resulting from recurrent cancer with local instillation of aclarubicin hydrochloride. Am J Clin Oncol. 1999 Aug;22(4):396-8. doi: 10.1097/00000421-199908000-00015. PMID: 10440198. 3: Ichihara T, Sakamoto K, Mori K, Akagi M. Transcatheter arterial chemoembolization therapy for hepatocellular carcinoma using polylactic acid microspheres containing aclarubicin hydrochloride. Cancer Res. 1989 Aug 1;49(15):4357-62. PMID: 2472878. 4: Tsuda T, Okamoto Y, Sakaguchi R, Katayama N, Ota K. The CAG regimen (low-dose cytarabine, aclarubicin hydrochloride and granulocyte colony-stimulating factor) for the treatment of elderly acute myelomonocytic leukaemia: a case study. J Int Med Res. 2001 Jan-Feb;29(1):41-7. doi: 10.1177/147323000102900107. PMID: 11277347. 5: Mori S, Ogasawara T, Nishimura M, Miura H, Goto S, Oki T, Inui T. Physiochemical properties and stability of aclacinomycin A hydrochloride. Jpn J Antibiot. 1980 May;33(5):618-22. PMID: 6933235. 6: Xu Q, Li Y, Jing Y, Lv N, Wang L, Li Y, Yu L. Epigenetic modifier gene mutations-positive AML patients with intermediate-risk karyotypes benefit from decitabine with CAG regimen. Int J Cancer. 2020 Mar 1;146(5):1457-1467. doi: 10.1002/ijc.32593. Epub 2019 Aug 14. PMID: 31344264. 7: Wada R, Hyon SH, Ikada Y. Lactic acid oligomer microspheres containing hydrophilic drugs. J Pharm Sci. 1990 Oct;79(10):919-24. doi: 10.1002/jps.2600791016. PMID: 2280363. 8: Tanaka T, Kobayashi T, Kida Y. [Combined chemotherapy with cisplatin and aclarubicin hydrochloride for metastatic brain tumors]. No Shinkei Geka. 1988 Jan;16(1):23-8. Japanese. PMID: 3163105. 9: Poochikian GK, Cradock JC, Flora KP. Stability of anthracycline antitumor agents in four infusion fluids. Am J Hosp Pharm. 1981 Apr;38(4):483-6. PMID: 6945043. 10: Ma Y, Shen J, Wang LX. Successful treatment of high-risk myelodysplastic syndrome with decitabine-based chemotherapy followed by haploidentical lymphocyte infusion: A case report and literature review. Medicine (Baltimore). 2018 Apr;97(16):e0434. doi: 10.1097/MD.0000000000010434. PMID: 29668607; PMCID: PMC5916686. 11: Mori S, Shindo N, Miura H, Oki T, Inui T. [Studies on the stability of aclacinomycin hydrochloride. I. Stability of solution of aclacinomycin hydrochloride (author's transl)]. Jpn J Antibiot. 1980 Apr;33(4):466-71. Japanese. PMID: 7411850. 12: Matsuno S, Hisano H, Kobari M, Akaishi S. Growth-inhibitory effect of combination chemotherapy for human pancreatic cancer cell lines. Cancer. 1990 Dec 1;66(11):2369-74. doi: 10.1002/1097-0142(19901201)66:11<2369::aid- cncr2820661120>3.0.co;2-z. PMID: 2123126. 13: Ninomiya H, Nakazawa M, Shibuya A, Aoki Y, Nagasawa T, Abe T. Successful treatment of acute megakaryoblastic leukaemia. Scand J Haematol. 1986 Feb;36(2):147-53. doi: 10.1111/j.1600-0609.1986.tb00819.x. PMID: 3458290. 14: Ueda K, Jinno H, Watanabe H, Ohtaguro K. [Combination effects of CDDP, ACR and HCFU on progressive urothelial tumors]. Gan To Kagaku Ryoho. 1985 Jun;12(6):1318-22. Japanese. PMID: 3859251.