MedKoo Cat#: 556048 | Name: C12-200
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

C12-200 is potent branched-tail lipid. C12-200 is useful for the development of lipidoid nanoparticles for siRNA, mRNA, and vaccine Delivery. C12-200 formulation can increase the potency of erythropoietin-mRNA-loaded C12-200 lipid nanoparticles 7-fold relative to formulations previously used for siRNA delivery.

Chemical Structure

C12-200
C12-200
CAS#1220890-25-4

Theoretical Analysis

MedKoo Cat#: 556048

Name: C12-200

CAS#: 1220890-25-4

Chemical Formula: C70H145N5O5

Exact Mass: 1136.1246

Molecular Weight: 1136.96

Elemental Analysis: C, 73.95; H, 12.86; N, 6.16; O, 7.04

Price and Availability

Size Price Availability Quantity
10mg USD 150.00 Ready to Ship
25mg USD 250.00 Ready to Ship
50mg USD 450.00 Ready to Ship
100mg USD 750.00 Ready to Ship
200mg USD 1,250.00 Ready to Ship
500mg USD 2,650.00 Ready to Ship
1g USD 3,850.00 Ready to Ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Synonym
C12-200; C 12-200; C-12-200; C12 200; C12200; C 12200; C-12200; Tech G 1;
IUPAC/Chemical Name
1,1-((2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl) amino)ethyl)piperazin-1-yl)ethyl)azanediyl)bis(dodecan-2-ol)
InChi Key
URQSMTPJROAUPK-UHFFFAOYSA-N
InChi Code
InChI=1S/C70H145N5O5/c1-6-11-16-21-26-31-36-41-46-65(76)61-74(62-66(77)47-42-37-32-27-22-17-12-7-2)53-51-69(70(80)50-45-40-35-30-25-20-15-10-5)71-52-54-72-55-57-73(58-56-72)59-60-75(63-67(78)48-43-38-33-28-23-18-13-8-3)64-68(79)49-44-39-34-29-24-19-14-9-4/h65-71,76-80H,6-64H2,1-5H3
SMILES Code
CCCCCCCCCCC(O)C(NCCN1CCN(CCN(CC(O)CCCCCCCCCC)CC(O)CCCCCCCCCC)CC1)CCN(CC(O)CCCCCCCCCC)CC(O)CCCCCCCCCC
Appearance
Liquid
Purity
>90% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Biological target:
C12-200 is a benchmark ionizable cationic lipidoid along with helper lipids.
In vitro activity:
The cationic lipidoid, C12-200, in the LNPs resulted in a net positive charge to the blank LNPs. This study prepared siRNA-LNPs using C12-200, a benchmark ionizable cationic lipidoid along with helper lipids. Reference: AAPS J. 2021 Dec 6;24(1):8. https://pubmed.ncbi.nlm.nih.gov/34873640/
In vivo activity:
To test this theory, this study compared IV-injected lipid nanoparticles formulated with reporter mRNA incorporating five base modifications (ψ, m1ψ, m5U, m5C/ψ, and m5C/s2U) and four ionizable lipids (C12-200, cKK-E12, ZA3-Ep10, and 200Oi10) with tropism for different organs. C12-200 and cKK-E12 (also known as MD-1) are five- and four-tailed ionizable lipids that predominately deliver mRNA to the liver. The ionizable lipid 200Oi10, which has the same amino core as C12-200 but contains ester linkages next to the alkyl tails with a branch on the terminal carbon, induces protein expression in the spleen and the liver. Reference: J Control Release. 2022 Jan;341:206-214. https://pubmed.ncbi.nlm.nih.gov/34801660/
Solvent mg/mL mM
Solubility
DMSO 100.0 87.95
Ethanol 100.0 87.95
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 1,136.96 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Khare P, Dave KM, Kamte YS, Manoharan MA, O'Donnell LA, Manickam DS. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. AAPS J. 2021 Dec 6;24(1):8. doi: 10.1208/s12248-021-00653-2. PMID: 34873640; PMCID: PMC8648339. 2. Melamed JR, Hajj KA, Chaudhary N, Strelkova D, Arral ML, Pardi N, Alameh MG, Miller JB, Farbiak L, Siegwart DJ, Weissman D, Whitehead KA. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J Control Release. 2022 Jan;341:206-214. doi: 10.1016/j.jconrel.2021.11.022. Epub 2021 Nov 18. PMID: 34801660; PMCID: PMC8905090. 3. Hajj KA, Melamed JR, Chaudhary N, Lamson NG, Ball RL, Yerneni SS, Whitehead KA. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo. Nano Lett. 2020 Jul 8;20(7):5167-5175. doi: 10.1021/acs.nanolett.0c00596. Epub 2020 Jun 9. PMID: 32496069; PMCID: PMC7781386.
In vitro protocol:
1. Khare P, Dave KM, Kamte YS, Manoharan MA, O'Donnell LA, Manickam DS. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. AAPS J. 2021 Dec 6;24(1):8. doi: 10.1208/s12248-021-00653-2. PMID: 34873640; PMCID: PMC8648339.
In vivo protocol:
1. Melamed JR, Hajj KA, Chaudhary N, Strelkova D, Arral ML, Pardi N, Alameh MG, Miller JB, Farbiak L, Siegwart DJ, Weissman D, Whitehead KA. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J Control Release. 2022 Jan;341:206-214. doi: 10.1016/j.jconrel.2021.11.022. Epub 2021 Nov 18. PMID: 34801660; PMCID: PMC8905090. 2. Hajj KA, Melamed JR, Chaudhary N, Lamson NG, Ball RL, Yerneni SS, Whitehead KA. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo. Nano Lett. 2020 Jul 8;20(7):5167-5175. doi: 10.1021/acs.nanolett.0c00596. Epub 2020 Jun 9. PMID: 32496069; PMCID: PMC7781386.
1: Khare P, Dave KM, Kamte YS, Manoharan MA, O'Donnell LA, Manickam DS. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. AAPS J. 2021 Dec 6;24(1):8. doi: 10.1208/s12248-021-00653-2. PMID: 34873640; PMCID: PMC8648339. 2: Reinhart AG, Osterwald A, Ringler P, Leiser Y, Lauer ME, Martin RE, Ullmer C, Schumacher F, Korn C, Keller M. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions. Mol Pharm. 2023 Dec 4;20(12):6492-6503. doi: 10.1021/acs.molpharmaceut.3c00956. Epub 2023 Nov 17. PMID: 37975733. 3: Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, DeRosa F, Mir FF, Fenton OS, Anderson DG. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015 Nov 11;15(11):7300-6. doi: 10.1021/acs.nanolett.5b02497. Epub 2015 Oct 20. PMID: 26469188. 4: Barbieri BD, Peeler DJ, Samnuan K, Day S, Hu K, Sallah HJ, Tregoning JS, McKay PF, Shattock RJ. The role of helper lipids in optimising nanoparticle formulations of self-amplifying RNA. J Control Release. 2024 Oct;374:280-292. doi: 10.1016/j.jconrel.2024.08.016. Epub 2024 Aug 21. PMID: 39142355. 5: Patel SK, Billingsley MM, Mukalel AJ, Thatte AS, Hamilton AG, Gong N, El- Mayta R, Safford HC, Merolle M, Mitchell MJ. Bile acid-containing lipid nanoparticles enhance extrahepatic mRNA delivery. Theranostics. 2024 Jan 1;14(1):1-16. doi: 10.7150/thno.89913. PMID: 38164140; PMCID: PMC10750194. 6: Meulewaeter S, Aernout I, Deprez J, Engelen Y, De Velder M, Franceschini L, Breckpot K, Van Calenbergh S, Asselman C, Boucher K, Impens F, De Smedt SC, Verbeke R, Lentacker I. Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. J Control Release. 2024 Jun;370:379-391. doi: 10.1016/j.jconrel.2024.04.052. Epub 2024 May 4. PMID: 38697317. 7: Labonia MCI, Estapé Senti M, van der Kraak PH, Brans MAD, Dokter I, Streef TJ, Smits AM, Deshantri AK, de Jager SCA, Schiffelers RM, Sluijter JPG, Vader P. Cardiac delivery of modified mRNA using lipid nanoparticles: Cellular targets and biodistribution after intramyocardial administration. J Control Release. 2024 May;369:734-745. doi: 10.1016/j.jconrel.2024.04.018. Epub 2024 Apr 13. PMID: 38604385. 8: Borrajo ML, Quijano A, Lapuhs P, Rodriguez-Perez AI, Anthiya S, Labandeira- Garcia JL, Valenzuela R, Alonso MJ. Ionizable nanoemulsions for RNA delivery into the central nervous system - importance of diffusivity. J Control Release. 2024 Aug;372:295-303. doi: 10.1016/j.jconrel.2024.06.051. Epub 2024 Jun 24. PMID: 38909703. 9: Mrksich K, Padilla MS, Joseph RA, Han EL, Kim D, Palanki R, Xu J, Mitchell MJ. Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length. J Biomed Mater Res A. 2024 Sep;112(9):1494-1505. doi: 10.1002/jbm.a.37705. Epub 2024 Mar 15. PMID: 38487970; PMCID: PMC11239295. 10: Oza D, Ivich F, Pace J, Yu M, Niedre M, Amiji M. Lipid nanoparticle encapsulated large peritoneal macrophages migrate to the lungs via the systemic circulation in a model of clodronate-mediated lung-resident macrophage depletion. Theranostics. 2024 Apr 8;14(6):2526-2543. doi: 10.7150/thno.91062. PMID: 38646640; PMCID: PMC11024852. 11: Ini' C, Vasile T, Foti PV, Timpanaro C, Castiglione DG, Libra F, Falsaperla D, Tiralongo F, Giurazza F, Mosconi C, David E, Palmucci S, Lavalle S, Venturini M, Basile A. Prostate Artery Embolization as Minimally Invasive Treatment for Benign Prostatic Hyperplasia: An Updated Systematic Review. J Clin Med. 2024 Apr 25;13(9):2530. doi: 10.3390/jcm13092530. PMID: 38731058; PMCID: PMC11085005. 12: Zeng Y, Escalona-Rayo O, Knol R, Kros A, Slütter B. Lipid nanoparticle-based mRNA candidates elicit potent T cell responses. Biomater Sci. 2023 Jan 31;11(3):964-974. doi: 10.1039/d2bm01581a. PMID: 36537916. 13: Melamed JR, Hajj KA, Chaudhary N, Strelkova D, Arral ML, Pardi N, Alameh MG, Miller JB, Farbiak L, Siegwart DJ, Weissman D, Whitehead KA. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J Control Release. 2022 Jan;341:206-214. doi: 10.1016/j.jconrel.2021.11.022. Epub 2021 Nov 18. PMID: 34801660; PMCID: PMC8905090. 14: Young RE, Nelson KM, Hofbauer SI, Vijayakumar T, Alameh MG, Weissman D, Papachristou C, Gleghorn JP, Riley RS. Systematic development of ionizable lipid nanoparticles for placental mRNA delivery using a design of experiments approach. Bioact Mater. 2023 Dec 22;34:125-137. doi: 10.1016/j.bioactmat.2023.11.014. PMID: 38223537; PMCID: PMC10784148. 15: Khare P, Conway JF, S Manickam D. Lipidoid nanoparticles increase ATP uptake into hypoxic brain endothelial cells. Eur J Pharm Biopharm. 2022 Nov;180:238-250. doi: 10.1016/j.ejpb.2022.10.011. Epub 2022 Oct 17. PMID: 36265829. 16: Da Silva Sanchez AJ, Zhao K, Huayamares SG, Hatit MZC, Lokugamage MP, Loughrey D, Dobrowolski C, Wang S, Kim H, Paunovska K, Kuzminich Y, Dahlman JE. Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery. J Control Release. 2023 Jan;353:270-277. doi: 10.1016/j.jconrel.2022.11.037. Epub 2022 Nov 30. PMID: 36423872; PMCID: PMC9897220. 17: Borrajo ML, Lou G, Anthiya S, Lapuhs P, Álvarez DM, Tobío A, Loza MI, Vidal A, Alonso MJ. Nanoemulsions and nanocapsules as carriers for the development of intranasal mRNA vaccines. Drug Deliv Transl Res. 2024 Aug;14(8):2046-2061. doi: 10.1007/s13346-024-01635-5. Epub 2024 May 29. PMID: 38811465; PMCID: PMC11208213. 18: Hajj KA, Melamed JR, Chaudhary N, Lamson NG, Ball RL, Yerneni SS, Whitehead KA. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo. Nano Lett. 2020 Jul 8;20(7):5167-5175. doi: 10.1021/acs.nanolett.0c00596. Epub 2020 Jun 9. PMID: 32496069; PMCID: PMC7781386.