MedKoo Cat#: 463935 | Name: Methylatropine nitrate
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Methylatropine is an antagonist of muscarinic acetylcholine receptors (IC50 = <0.1 nM in a radioligand binding assay using isolated porcine brain membranes) and a derivative of atropine. It reduces acetylcholine-induced decreases in blood pressure in rats when administered intravenously with an ED50 value of 5.5 µg/kg. Methylatropine reduces salivation, induces mydriasis, and increases heart rate in dogs.

Chemical Structure

Methylatropine nitrate
Methylatropine nitrate
CAS#52-88-0 (nitrate)

Theoretical Analysis

MedKoo Cat#: 463935

Name: Methylatropine nitrate

CAS#: 52-88-0 (nitrate)

Chemical Formula: C18H26N2O6

Exact Mass: 366.1791

Molecular Weight: 366.41

Elemental Analysis: C, 59.00; H, 7.15; N, 7.65; O, 26.20

Price and Availability

Size Price Availability Quantity
5mg USD 265.00 2 Weeks
25mg USD 685.00 2 Weeks
50mg USD 950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Synonym
Methylatropine nitrate; Methylatropine-nitrate; Ekomine; Metanite; Atropine methyl nitrate;
IUPAC/Chemical Name
(1R,3r,5S)-3-((3-hydroxy-2-phenylpropanoyl)oxy)-8,8-dimethyl-8-azabicyclo[3.2.1]octan-8-ium nitrate
InChi Key
NEDVJZNVOSNSHF-KUMOIWDRSA-N
InChi Code
InChI=1S/C18H26NO3.NO3/c1-19(2)14-8-9-15(19)11-16(10-14)22-18(21)17(12-20)13-6-4-3-5-7-13;2-1(3)4/h3-7,14-17,20H,8-12H2,1-2H3;/q+1;-1/t14-,15+,16+,17?;
SMILES Code
C[N+]1([C@@H]2CC[C@H]1C[C@@H](OC(C(c3ccccc3)CO)=O)C2)C.[O-][N+]([O-])=O
Appearance
Solid powder
Purity
>95% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Methylatropine is an antagonist of muscarinic acetylcholine receptors (IC50 = <0.1 nM in a radioligand binding assay using isolated porcine brain membranes) and a derivative of atropine.
In vitro activity:
The gene and the protein expression level results show that atropine is an effective molecule in reducing epithelial-mesenchymal transition (EMT) and colony formation induced by TGF-B or carboplatin in both the mesenchymal-like cell line MDA-MB-231 and the epithelial-like cell line T47D. Reference: Int J Mol Sci. 2022 Aug 30;23(17):9849. https://pubmed.ncbi.nlm.nih.gov/36077256/
In vivo activity:
When rats were injected with methylatropine i.c.v., the plasma glucose concentration increased, the insulin response reduced, and glucagon-like peptide-1 (7-36) amide (tGLP-1) was unchanged following an oral glucose load, compared with the controls. A transient increase in plasma insulin after selective hepatic vagotomy was inhibited by i.c.v. injection of methylatropine. Reference: J Auton Nerv Syst. 1996 Feb 5;57(1-2):43-8. https://pubmed.ncbi.nlm.nih.gov/8867084/
Solvent mg/mL mM comments
Solubility
DMF 30.0 81.87
DMSO 30.0 81.87
Ethanol 30.0 81.87
PBS (pH 7.2) 10.0 27.29
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 366.41 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Ahmed EA, Alkuwayti MA, Ibrahim HM. Atropine Is a Suppressor of Epithelial-Mesenchymal Transition (EMT) That Reduces Stemness in Drug-Resistant Breast Cancer Cells. Int J Mol Sci. 2022 Aug 30;23(17):9849. doi: 10.3390/ijms23179849. PMID: 36077256; PMCID: PMC9456281. 2. Cristaldi M, Olivieri M, Pezzino S, Spampinato G, Lupo G, Anfuso CD, Rusciano D. Atropine Differentially Modulates ECM Production by Ocular Fibroblasts, and Its Ocular Surface Toxicity Is Blunted by Colostrum. Biomedicines. 2020 Apr 5;8(4):78. doi: 10.3390/biomedicines8040078. PMID: 32260532; PMCID: PMC7236597. 3. Ohnuma H, Yamatani K, Igarashi M, Sugiyama K, Manaka H, Tominaga M, Sasaki H. Intracerebroventricular injection of methylatropine suppresses insulin response to oral glucose load in rats. J Auton Nerv Syst. 1996 Feb 5;57(1-2):43-8. doi: 10.1016/0165-1838(95)00101-8. PMID: 8867084. 4. Smith RD, Grzelak ME, Coffin VL. Methylatropine blocks the central effects of cholinergic antagonists. Behav Pharmacol. 1994 Apr;5(2):167-175. doi: 10.1097/00008877-199404000-00008. PMID: 11224265.
In vitro protocol:
1. Ahmed EA, Alkuwayti MA, Ibrahim HM. Atropine Is a Suppressor of Epithelial-Mesenchymal Transition (EMT) That Reduces Stemness in Drug-Resistant Breast Cancer Cells. Int J Mol Sci. 2022 Aug 30;23(17):9849. doi: 10.3390/ijms23179849. PMID: 36077256; PMCID: PMC9456281. 2. Cristaldi M, Olivieri M, Pezzino S, Spampinato G, Lupo G, Anfuso CD, Rusciano D. Atropine Differentially Modulates ECM Production by Ocular Fibroblasts, and Its Ocular Surface Toxicity Is Blunted by Colostrum. Biomedicines. 2020 Apr 5;8(4):78. doi: 10.3390/biomedicines8040078. PMID: 32260532; PMCID: PMC7236597.
In vivo protocol:
1. Ohnuma H, Yamatani K, Igarashi M, Sugiyama K, Manaka H, Tominaga M, Sasaki H. Intracerebroventricular injection of methylatropine suppresses insulin response to oral glucose load in rats. J Auton Nerv Syst. 1996 Feb 5;57(1-2):43-8. doi: 10.1016/0165-1838(95)00101-8. PMID: 8867084. 2. Smith RD, Grzelak ME, Coffin VL. Methylatropine blocks the central effects of cholinergic antagonists. Behav Pharmacol. 1994 Apr;5(2):167-175. doi: 10.1097/00008877-199404000-00008. PMID: 11224265.
1: Lee K, Bohnert S, Vair C, Mikler J, Dunn JF. Cerebral blood flow and oxygenation in rat brain after soman exposure. Toxicol Lett. 2021 Jan 1;336:50-56. doi: 10.1016/j.toxlet.2020.10.009. Epub 2020 Nov 2. PMID: 33147512. 2: Lee K, Bohnert S, Bouchard M, Vair C, Farrell JS, Teskey GC, Mikler J, Dunn JF. Quantitative T2 MRI is predictive of neurodegeneration following organophosphate exposure in a rat model. Sci Rep. 2020 Aug 3;10(1):13007. doi: 10.1038/s41598-020-69991-z. PMID: 32747689; PMCID: PMC7400670. 3: Grippo AJ, Scotti ML, Wardwell J, McNeal N, Bates SL, Chandler DL, Ihm E, Jadia N. Cardiac and behavioral effects of social isolation and experimental manipulation of autonomic balance. Auton Neurosci. 2018 Nov;214:1-8. doi: 10.1016/j.autneu.2018.08.002. Epub 2018 Aug 15. PMID: 30177218; PMCID: PMC6134396. 4: Lewine JD, Weber W, Gigliotti A, McDonald JD, Doyle-Eisele M, Bangera N, Paulson K, Magcalas C, Hamilton DA, Garcia E, Raulli R, Laney J. Addition of ketamine to standard-of-care countermeasures for acute organophosphate poisoning improves neurobiological outcomes. Neurotoxicology. 2018 Dec;69:37-46. doi: 10.1016/j.neuro.2018.08.011. Epub 2018 Aug 30. PMID: 30172622. 5: Lo Martire V, Silvani A, Alvente S, Bastianini S, Berteotti C, Valli A, Zoccoli G. Modulation of sympathetic vasoconstriction is critical for the effects of sleep on arterial pressure in mice. J Physiol. 2018 Feb 15;596(4):591-608. doi: 10.1113/JP275353. Epub 2018 Jan 19. PMID: 29266348; PMCID: PMC5813608. 6: Shoji I, Kemuriyama T, Tandai-Hiruma M, Maruyama S, Tashiro A, Yokoe H, Nishida Y. Reflex arc of the teeth clenching-induced pressor response in rats. J Physiol Sci. 2018 Jan;68(1):89-100. doi: 10.1007/s12576-016-0513-9. Epub 2016 Dec 29. PMID: 28035645. 7: Ungerer TD, Kim KA, Daugherty SL, Roppolo JR, Tai C, de Groat WC. Influence of urothelial or suburothelial cholinergic receptors on bladder reflexes in chronic spinal cord injured cats. Exp Neurol. 2016 Nov;285(Pt B):147-158. doi: 10.1016/j.expneurol.2016.07.005. Epub 2016 Jul 14. PMID: 27423814; PMCID: PMC6122961. 8: Matsukawa K, Ishii K, Asahara R, Idesako M. Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat. J Appl Physiol (1985). 2016 Oct 1;121(4):932-943. doi: 10.1152/japplphysiol.00299.2016. Epub 2016 Aug 18. PMID: 27539494. 9: Fountain SB, Rowan JD, Wollan MO. Central cholinergic involvement in sequential behavior: impairments of performance by atropine in a serial multiple choice task for rats. Neurobiol Learn Mem. 2013 Nov;106:118-26. doi: 10.1016/j.nlm.2013.07.009. Epub 2013 Jul 18. PMID: 23871743; PMCID: PMC4460835. 10: Seino Y, Miki T, Fujimoto W, Young Lee E, Takahashi Y, Minami K, Oiso Y, Seino S. Cephalic phase insulin secretion is KATP channel independent. J Endocrinol. 2013 May 28;218(1):25-33. doi: 10.1530/JOE-12-0579. PMID: 23608222. 11: Birder LA, Wolf-Johnston AS, Sun Y, Chai TC. Alteration in TRPV1 and Muscarinic (M3) receptor expression and function in idiopathic overactive bladder urothelial cells. Acta Physiol (Oxf). 2013 Jan;207(1):123-9. doi: 10.1111/j.1748-1716.2012.02462.x. Epub 2012 Jul 12. PMID: 22691178; PMCID: PMC3494763. 12: Tai SK, Ma J, Ossenkopp KP, Leung LS. Activation of immobility-related hippocampal theta by cholinergic septohippocampal neurons during vestibular stimulation. Hippocampus. 2012 Apr;22(4):914-25. doi: 10.1002/hipo.20955. Epub 2011 May 3. PMID: 21542057. 13: Matsukawa K, Nakamoto T, Liang N. Electrical stimulation of the mesencephalic ventral tegmental area evokes skeletal muscle vasodilatation in the cat and rat. J Physiol Sci. 2011 Jul;61(4):293-301. doi: 10.1007/s12576-011-0149-8. Epub 2011 May 4. PMID: 21541811. 14: Jeong KH, Lee KE, Kim SY, Cho KO. Upregulation of Krüppel-like factor 6 in the mouse hippocampus after pilocarpine-induced status epilepticus. Neuroscience. 2011 Jul 14;186:170-8. doi: 10.1016/j.neuroscience.2011.02.046. Epub 2011 Mar 6. Erratum in: Neuroscience. 2012 Mar 15;205:205. PMID: 21362463. 15: Guo BQ, Jia M, Liu JX, Zhang Z. [Cardiovascular effect of intracerebroventricular injection of orexin-1 receptor antagonist in rats]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2010 Aug;26(3):278-83. Chinese. PMID: 21038669. 16: Yu Y, de Groat WC. Effects of stimulation of muscarinic receptors on bladder afferent nerves in the in vitro bladder-pelvic afferent nerve preparation of the rat. Brain Res. 2010 Nov 18;1361:43-53. doi: 10.1016/j.brainres.2010.09.018. Epub 2010 Sep 16. PMID: 20840844; PMCID: PMC3034278. 17: Wakasugi R, Nakamoto T, Matsukawa K. The effects of adrenalectomy and autonomic blockades on the exercise tachycardia in conscious rats. Auton Neurosci. 2010 Jun 24;155(1-2):59-67. doi: 10.1016/j.autneu.2010.01.007. Epub 2010 Feb 13. PMID: 20153986. 18: Fauvelle F, Dorandeu F, Carpentier P, Foquin A, Rabeson H, Graveron-Demilly D, Arvers P, Testylier G. Changes in mouse brain metabolism following a convulsive dose of soman: a proton HRMAS NMR study. Toxicology. 2010 Jan 12;267(1-3):99-111. doi: 10.1016/j.tox.2009.10.026. Epub 2009 Oct 31. PMID: 19883723. 19: Yeh CH, Chiang HS, Chien CT. Hyaluronic acid ameliorates bladder hyperactivity via the inhibition of H2O2-enhanced purinergic and muscarinic signaling in the rat. Neurourol Urodyn. 2010 Jun;29(5):765-70. doi: 10.1002/nau.20830. PMID: 19852063. 20: Shih TM, Skovira JW, McDonough JH. Effects of 4-pyridine aldoxime on nerve agent-inhibited acetylcholinesterase activity in guinea pigs. Arch Toxicol. 2009 Dec;83(12):1083-9. doi: 10.1007/s00204-009-0465-4. Epub 2009 Sep 10. PMID: 19763542.