Synonym
MPro Inhibitor 11b;
IUPAC/Chemical Name
N-((S)-3-(3-fluorophenyl)-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)-1H-indole-2-carboxamide
InChi Key
HCRBVFBQANEDDM-CUWPLCDZSA-N
InChi Code
InChI=1S/C25H25FN4O4/c26-18-6-3-4-15(10-18)11-21(24(33)28-19(14-31)12-17-8-9-27-23(17)32)30-25(34)22-13-16-5-1-2-7-20(16)29-22/h1-7,10,13-14,17,19,21,29H,8-9,11-12H2,(H,27,32)(H,28,33)(H,30,34)/t17-,19-,21-/m0/s1
SMILES Code
O=C1NCC[C@H]1C[C@@H](C=O)NC([C@H](CC2=CC=CC(F)=C2)NC(C3=CC4=C(N3)C=CC=C4)=O)=O
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
Biological target:
SARS-CoV MPro-IN-1 is a SARS-CoV-2 3CLpro covalent inhibitor, with an IC50 of 40 nM.
In vitro activity:
This study designed and synthesized two lead compounds (11a and 11b) targeting Mpro Both exhibited excellent inhibitory activity and potent anti-SARS-CoV-2 infection activity. The x-ray crystal structures of SARS-CoV-2 Mpro in complex with 11a or 11b, both determined at a resolution of 1.5 angstroms, showed that the aldehyde groups of 11a and 11b are covalently bound to cysteine 145 of Mpro.
Reference: Science. 2020 Jun 19;368(6497):1331-1335. https://pubmed.ncbi.nlm.nih.gov/32321856/
|
Solvent |
mg/mL |
mM |
Solubility |
DMF |
30.0 |
64.59 |
DMSO |
40.0 |
86.11 |
Ethanol |
30.0 |
64.59 |
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.
Preparing Stock Solutions
The following data is based on the
product
molecular weight
464.50
Batch specific molecular weights may vary
from batch to batch
due to the degree of hydration, which will
affect the solvent
volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass |
1 mg |
5 mg |
10 mg |
1 mM |
1.15 mL |
5.76 mL |
11.51 mL |
5 mM |
0.23 mL |
1.15 mL |
2.3 mL |
10 mM |
0.12 mL |
0.58 mL |
1.15 mL |
50 mM |
0.02 mL |
0.12 mL |
0.23 mL |
Formulation protocol:
Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Xie X, Jin Z, Peng J, Liu F, Li C, Li Y, Bai F, Wang H, Cheng X, Cen X, Hu S, Yang X, Wang J, Liu X, Xiao G, Jiang H, Rao Z, Zhang LK, Xu Y, Yang H, Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020 Jun 19;368(6497):1331-1335. doi: 10.1126/science.abb4489. Epub 2020 Apr 22. PMID: 32321856; PMCID: PMC7179937.
In vitro protocol:
Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Xie X, Jin Z, Peng J, Liu F, Li C, Li Y, Bai F, Wang H, Cheng X, Cen X, Hu S, Yang X, Wang J, Liu X, Xiao G, Jiang H, Rao Z, Zhang LK, Xu Y, Yang H, Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020 Jun 19;368(6497):1331-1335. doi: 10.1126/science.abb4489. Epub 2020 Apr 22. PMID: 32321856; PMCID: PMC7179937.
1: Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, Xie X, Jin Z, Peng J, Liu F, Li C, Li Y, Bai F, Wang H, Cheng X, Cen X, Hu S, Yang X, Wang J, Liu X, Xiao G, Jiang H, Rao Z, Zhang LK, Xu Y, Yang H, Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020 Jun 19;368(6497):1331-1335. doi: 10.1126/science.abb4489. Epub 2020 Apr 22. PMID: 32321856; PMCID: PMC7179937.