MedKoo Cat#: 563761 | Name: MitoNeoD
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

MitoNeoD is a novel mitochondria-targeted O2(⋅−) probe that can be used in vivo. It prevents DNA intercalation. MitoNeoD incorporates a carbon-deuterium bond, and enhances O2(⋅−) selectivity. MitoNeoD comprises a O2⋅--sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅- over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. MitoNeoD is a versatile and robust probe to assess changes in mitochondrial O2⋅- from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅- production in health and disease.

Chemical Structure

MitoNeoD
MitoNeoD
CAS#2375088-89-2 (bromide)

Theoretical Analysis

MedKoo Cat#: 563761

Name: MitoNeoD

CAS#: 2375088-89-2 (bromide)

Chemical Formula: C53H62DBrN3P

Exact Mass: 773.4817

Molecular Weight: 853.99

Elemental Analysis: C, 74.54; H, 7.55; Br, 9.36; N, 4.92; P, 3.63

Price and Availability

Size Price Availability Quantity
1mg USD 90.00 Ready to ship
5mg USD 225.00 Ready to ship
10mg USD 405.00 Ready to ship
25mg USD 850.00 Ready to ship
50mg USD 1,450.00 Ready to ship
100mg USD 2,450.00 Ready to ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
2375088-89-2 (cation) 2375088-89-2 (bromide)
Synonym
MitoNeoD; Mito-NeoD; Mito Neo D; Mito-Neo-D; Mito Neo-D
IUPAC/Chemical Name
(6-(3,8-Bis(neopentylamino)-6-phenylphenanthridin-5(6H)-yl-6-d)hexyl)triphenylphosphonium bromide
InChi Key
FMTMQUAQVIOWNQ-UTANGQNASA-M
InChi Code
InChI=1S/C53H63N3P.BrH/c1-52(2,3)39-54-42-31-33-47-48-34-32-43(55-40-53(4,5)6)38-50(48)56(51(49(47)37-42)41-23-13-9-14-24-41)35-21-7-8-22-36-57(44-25-15-10-16-26-44,45-27-17-11-18-28-45)46-29-19-12-20-30-46;/h9-20,23-34,37-38,51,54-55H,7-8,21-22,35-36,39-40H2,1-6H3;1H/q+1;/p-1/i51D;
SMILES Code
CC(C)(C)CNC1=CC(C(C2=CC=CC=C2)([2H])N(CCCCCC[P+](C3=CC=CC=C3)(C4=CC=CC=C4)C5=CC=CC=C5)C6=CC(NCC(C)(C)C)=CC=C76)=C7C=C1.[Br-]
Appearance
Solid powder
Purity
>95% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Mitochondrial superoxide (O2⋅-) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅-, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation.
Biological target:
TBD
In vitro activity:
This study next determined whether MitoNeoD could detect mitochondrial O2⋅− production within cells by confocal fluorescence microscopy (Figures 6E and 6F). The background rates of oxidation of MitoNeoH or MitoNeoD by unstressed cells were low, with MitoNeoD being more stable (Figure 6E, inset). MitoNeoH was more sensitive to oxidation by O2⋅− than MitoNeoD (Figure 6E). However, the oxidation of MitoNeoD is a more reliable readout of O2⋅− levels than MitoNeoH, due to its lower sensitivity to non-specific oxidation to MitoNeo. MitoNeoD was oxidized by the mitochondria-targeted redox cycler MitoPQ, which generates O2⋅− by redox cycling at complex I (Figure 6G). This study concludes that, while the increase in fluorescence upon oxidation of MitoNeoD is less than that for MitoSOX Red, it is a more selective indicator of mitochondrial O2⋅− formation. Reference: Cell Chem Biol. 2017 Oct 19; 24(10): 1285–1298.e12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278870/
In vivo activity:
To see if MitoNeoD can assess mitochondrial O2⋅− formation in vivo this study focused on the mouse heart, because mitochondrial ROS production has been implicated in a multitude of cardiac pathologies. This study assessed this by injecting MitoNeoD into mice intravenously by a tail vein and then measured MitoNeoOH and MitoNeo in the heart and expressed this as Σ MitoNeo× over time (Figure 7E). This showed a very rapid uptake of MitoNeoD into the heart within a few minutes of injection that was then gradually lost over time, with a half-life of ∼1 hr, consistent with other TPP compounds. Interestingly, MitoNeoOH was a small proportion of Σ MitoNeo× in the heart, consistent with low levels of mitochondrial O2⋅− production in the normoxic heart and the relative stability of MitoNeoD in vivo (Figure 7E). To see if MitoNeoOH levels responded to an increase in mitochondrial O2⋅− production in vivo, this study administered MitoNeoD to mice at the same time as MitoPQ, which selectively induces mitochondrial O2⋅− production in the heart (Robb et al., 2015). MitoPQ increased the MitoNeoOH/Σ MitoNeo× ratio markedly in the hearts (Figure 7F). Therefore, MitoNeoD can be used to assess mitochondrial O2⋅− production in vivo. Reference: Cell Chem Biol. 2017 Oct 19; 24(10): 1285–1298.e12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278870/

Preparing Stock Solutions

The following data is based on the product molecular weight 853.99 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Shchepinova MM, Cairns AG, Prime TA, Logan A, James AM, Hall AR, Vidoni S, Arndt S, Caldwell ST, Prag HA, Pell VR, Krieg T, Mulvey JF, Yadav P, Cobley JN, Bright TP, Senn HM, Anderson RF, Murphy MP, Hartley RC. MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chem Biol. 2017 Oct 19;24(10):1285-1298.e12. doi: 10.1016/j.chembiol.2017.08.003. Epub 2017 Sep 7. PMID: 28890317; PMCID: PMC6278870.
In vitro protocol:
1. Shchepinova MM, Cairns AG, Prime TA, Logan A, James AM, Hall AR, Vidoni S, Arndt S, Caldwell ST, Prag HA, Pell VR, Krieg T, Mulvey JF, Yadav P, Cobley JN, Bright TP, Senn HM, Anderson RF, Murphy MP, Hartley RC. MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chem Biol. 2017 Oct 19;24(10):1285-1298.e12. doi: 10.1016/j.chembiol.2017.08.003. Epub 2017 Sep 7. PMID: 28890317; PMCID: PMC6278870.
In vivo protocol:
1. Shchepinova MM, Cairns AG, Prime TA, Logan A, James AM, Hall AR, Vidoni S, Arndt S, Caldwell ST, Prag HA, Pell VR, Krieg T, Mulvey JF, Yadav P, Cobley JN, Bright TP, Senn HM, Anderson RF, Murphy MP, Hartley RC. MitoNeoD: A Mitochondria-Targeted Superoxide Probe. Cell Chem Biol. 2017 Oct 19;24(10):1285-1298.e12. doi: 10.1016/j.chembiol.2017.08.003. Epub 2017 Sep 7. PMID: 28890317; PMCID: PMC6278870.
1: Liu W, Xue Y, Ma M, Wang S, Liu N, Chen Y. Multiple oxidative routes towards the maturation of nosiheptide. Chembiochem. 2013 Sep 2;14(13):1544-7. doi: 10.1002/cbic.201300427. Epub 2013 Aug 12. PubMed PMID: 23939763. 2: Jiang L, Xue YJ, Liu WY, Ma M, Wu XR, Wang SZ, Chen YJ. The importance of start codon of nosM in nosiheptide production. Chin J Nat Med. 2015 Nov;13(11):854-860. doi: 10.1016/S1875-5364(15)30089-3. PubMed PMID: 26614460. 3: Yin S, Jiang H, Chen D, Murchie AI. Substrate recognition and modification by the nosiheptide resistance methyltransferase. PLoS One. 2015 Apr 24;10(4):e0122972. doi: 10.1371/journal.pone.0122972. eCollection 2015. PubMed PMID: 25910005; PubMed Central PMCID: PMC4409310. 4: Wang Q, Zhang D, Li Y, Zhang F, Wang C, Liang X. Genome shuffling and ribosome engineering of Streptomyces actuosus for high-yield nosiheptide production. Appl Biochem Biotechnol. 2014 Jul;173(6):1553-63. doi: 10.1007/s12010-014-0948-5. Epub 2014 May 15. PubMed PMID: 24828581. 5: Liu W, Ma M, Xue Y, Liu N, Wang S, Chen Y. The C-terminal extended serine residue is absolutely required in nosiheptide maturation. Chembiochem. 2013 Mar 18;14(5):573-6. doi: 10.1002/cbic.201200681. Epub 2013 Feb 25. PubMed PMID: 23440918. 6: Ma M, Xue Y, Liu W, Zhang H, Kong L, Wang S, Chen Y. Directly utilizing an endogenous gene to dissect regulatory elements in the biosynthetic gene cluster of nosiheptide. Chem Commun (Camb). 2014 Sep 18;50(72):10430-3. doi: 10.1039/c4cc04974h. PubMed PMID: 25059114. 7: Zhou W, Liu X, Zhang P, Zhou P, Shi X. Effect analysis of mineral salt concentrations on nosiheptide production by Streptomyces actuosus Z-10 using response surface methodology. Molecules. 2014 Sep 26;19(10):15507-20. doi: 10.3390/molecules191015507. PubMed PMID: 25264834. 8: Wang S, Zhou S, Liu W. Opportunities and challenges from current investigations into the biosynthetic logic of nosiheptide-represented thiopeptide antibiotics. Curr Opin Chem Biol. 2013 Aug;17(4):626-34. doi: 10.1016/j.cbpa.2013.06.021. Epub 2013 Jul 6. Review. PubMed PMID: 23838388. 9: Haste NM, Thienphrapa W, Tran DN, Loesgen S, Sun P, Nam SJ, Jensen PR, Fenical W, Sakoulas G, Nizet V, Hensler ME. Activity of the thiopeptide antibiotic nosiheptide against contemporary strains of methicillin-resistant Staphylococcus aureus. J Antibiot (Tokyo). 2012 Dec;65(12):593-8. doi: 10.1038/ja.2012.77. Epub 2012 Oct 10. PubMed PMID: 23047246; PubMed Central PMCID: PMC3528839. 10: Liu S, Guo H, Zhang T, Han L, Yao P, Zhang Y, Rong N, Yu Y, Lan W, Wang C, Ding J, Wang R, Liu W, Cao C. Structure-based Mechanistic Insights into Terminal Amide Synthase in Nosiheptide-Represented Thiopeptides Biosynthesis. Sci Rep. 2015 Aug 5;5:12744. doi: 10.1038/srep12744. PubMed PMID: 26244829; PubMed Central PMCID: PMC4525488. 11: Wojtas KP, Riedrich M, Lu JY, Winter P, Winkler T, Walter S, Arndt HD. Total Synthesis of Nosiheptide. Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9772-6. doi: 10.1002/anie.201603140. Epub 2016 Jun 27. PubMed PMID: 27345011. 12: Wang Y, Liu S, Yao P, Yu Y, Zhang Y, Lan W, Wang C, Ding J, Liu W, Cao C. Crystallographic analysis of NosA, which catalyzes terminal amide formation in the biosynthesis of nosiheptide. Acta Crystallogr F Struct Biol Commun. 2015 Aug;71(Pt 8):1033-7. doi: 10.1107/S2053230X15011085. Epub 2015 Jul 28. PubMed PMID: 26249695; PubMed Central PMCID: PMC4528937. 13: Yamata T, Shimamura C, Asao M, Aita N, Chihara T. [Validation Study on a Method of Determination of Nosiheptide in Formula Feeds by HPLC-FL]. Shokuhin Eiseigaku Zasshi. 2015;56(4):173-7. doi: 10.3358/shokueishi.56.173. Japanese. PubMed PMID: 26346862. 14: Yang H, Wang Z, Shen Y, Wang P, Jia X, Zhao L, Zhou P, Gong R, Li Z, Yang Y, Chen D, Murchie AI, Xu Y. Crystal structure of the nosiheptide-resistance methyltransferase of Streptomyces actuosus. Biochemistry. 2010 Aug 3;49(30):6440-50. doi: 10.1021/bi1005915. PubMed PMID: 20550164. 15: Ji X, Li Y, Ding W, Zhang Q. Substrate-Tuned Catalysis of the Radical S-Adenosyl-L-Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis. Angew Chem Int Ed Engl. 2015 Jul 27;54(31):9021-4. doi: 10.1002/anie.201503976. Epub 2015 Jul 3. PubMed PMID: 26138750. 16: Mo Q, Zhang H, Liu Q, Tang X, Zhao L, Zan X, Song Y. Enhancing nosiheptide production in Streptomyces actuosus by heterologous expression of haemoprotein from Sinorhizobium meliloti. Lett Appl Microbiol. 2016 Jun;62(6):480-7. doi: 10.1111/lam.12575. PubMed PMID: 27096926. 17: Yang H, Wang P, Dong Z, Li X, Gong R, Yang Y, Li Z, Xu Y, Xu Y. Crystallization and preliminary crystallographic analysis of nosiheptide-resistance methyltransferase from Streptomyces actuosus in complex with SAM. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 May 1;66(Pt 5):579-82. doi: 10.1107/S1744309110011395. Epub 2010 Apr 30. PubMed PMID: 20445264; PubMed Central PMCID: PMC2864697. 18: Yu Y, Guo H, Zhang Q, Duan L, Ding Y, Liao R, Lei C, Shen B, Liu W. NosA catalyzing carboxyl-terminal amide formation in nosiheptide maturation via an enamine dealkylation on the serine-extended precursor peptide. J Am Chem Soc. 2010 Nov 24;132(46):16324-6. doi: 10.1021/ja106571g. Epub 2010 Nov 3. PubMed PMID: 21047073; PubMed Central PMCID: PMC2990472. 19: Li Y, Dosch DC, Woodman RH, Floss HG, Strohl WR. Transcriptional organization and regulation of the nosiheptide resistance gene in Streptomyces actuosus. J Ind Microbiol. 1991 Jul;8(1):1-12. Review. PubMed PMID: 1367329. 20: Pascal C, Gaillard C, Moreau MO. Identification of nosiheptide in feeds and detection of residues in animal tissues. J Assoc Off Anal Chem. 1979 Sep;62(5):976-81. PubMed PMID: 528472.

1. Chandra S, Katiyar P, Durairaj AS, Wang X. Mitochondrial Calcium Transport During Autophagy Initiation. Mitochondrial Commun. 2024;2:14-20. doi: 10.1016/j.mitoco.2024.01.002. Epub 2024 Jan 28. PMID: 38347884; PMCID: PMC10861220.

2.  Li S, Xin Q, Fang G, Deng Y, Yang F, Qiu C, Yang Y, Lan C. Upregulation of mitochondrial telomerase reverse transcriptase mediates the preventive effect of physical exercise on pathological cardiac hypertrophy via improving mitochondrial function and inhibiting oxidative stress. Biochim Biophys Acta Mol Basis Dis. 2024 Jan;1870(1):166859. doi: 10.1016/j.bbadis.2023.166859. Epub 2023 Aug 27. PMID: 37643691.

3. Zhang X, Chen L, Liu W, Shen J, Sun H, Liang J, Lv G, Chen G, Yang Y, Ou J. 5-Aminolevulinate improves metabolic recovery and cell survival of the liver following cold preservation. Theranostics. 2022 Mar 21;12(6):2908-2927. doi: 10.7150/thno.69446. PMID: 35401816; PMCID: PMC8965473.

4. Wang T, Liu Y, Zhou Y, Liu Q, Zhang Q, Sun M, Sun M, Li H, Xu A, Liu Y. Astaxanthin protected against the adverse effects induced by diesel exhaust particulate matter via improving membrane stability and anti-oxidative property. J Hazard Mater. 2023 Aug 15;456:131684. doi: 10.1016/j.jhazmat.2023.131684. Epub 2023 May 22. Erratum in: J Hazard Mater. 2023 Oct 5;459:132092. doi: 10.1016/j.jhazmat.2023.132092. PMID: 37236114.

5.  Megan Lee, Neal Bennett, Ken Nakamura FACS screening to detect regulators of ROS. dx.doi.org/10.17504/protocols.io.n2bvj32pwlk5/v1. https://www.protocols.io/view/facs-screening-to-detect-regulators-of-ros-n2bvj32pwlk5/v1

 6.  Jin G, Guo N, Liu Y, Zhang L, Chen L, Dong T, Liu W, Zhang X, Jiang Y, Lv G, Zhao F, Liu W, Hei Z, Yang Y, Ou J. 5-aminolevulinate and CHIL3/CHI3L1 treatment amid ischemia aids liver metabolism and reduces ischemia-reperfusion injury. Theranostics. 2023 Aug 28;13(14):4802-4820. doi: 10.7150/thno.83163. PMID: 37771779; PMCID: PMC10526663.