MedKoo Cat#: 598864 | Name: Lilial
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Lilial is a high-tonnage perfumery ingredient with a lily-of-the-valley odour, which is a CMR2 material.

Chemical Structure

Lilial
Lilial
CAS#80-54-6

Theoretical Analysis

MedKoo Cat#: 598864

Name: Lilial

CAS#: 80-54-6

Chemical Formula: C14H20O

Exact Mass: 204.1514

Molecular Weight: 204.31

Elemental Analysis: C, 82.30; H, 9.87; O, 7.83

Price and Availability

Size Price Availability Quantity
25mL USD 350.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Lilial; NSC 22275; NSC-22275; NSC22275; Lilyal;
IUPAC/Chemical Name
3-(4-(tert-butyl)phenyl)-2-methylpropanal
InChi Key
SDQFDHOLCGWZPU-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H20O/c1-11(10-15)9-12-5-7-13(8-6-12)14(2,3)4/h5-8,10-11H,9H2,1-4H3
SMILES Code
CC(CC1=CC=C(C(C)(C)C)C=C1)C=O
Appearance
Liquid
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Lilial is a high-tonnage perfumery ingredient with a lily-of-the-valley odour, which is a CMR2 material.
In vitro activity:
Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Reference: Toxicol In Vitro. 2013 Feb;27(1):339-48. https://pubmed.ncbi.nlm.nih.gov/22940465/
In vivo activity:
TBD

Preparing Stock Solutions

The following data is based on the product molecular weight 204.31 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Usta J, Hachem Y, El-Rifai O, Bou-Moughlabey Y, Echtay K, Griffiths D, Nakkash-Chmaisse H, Makki RF. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants. Toxicol In Vitro. 2013 Feb;27(1):339-48. doi: 10.1016/j.tiv.2012.08.020. Epub 2012 Aug 24. PMID: 22940465. 2. Charles AK, Darbre PD. Oestrogenic activity of benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) in MCF7 human breast cancer cells in vitro. J Appl Toxicol. 2009 Jul;29(5):422-34. doi: 10.1002/jat.1429. PMID: 19338011.
In vitro protocol:
1. Usta J, Hachem Y, El-Rifai O, Bou-Moughlabey Y, Echtay K, Griffiths D, Nakkash-Chmaisse H, Makki RF. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants. Toxicol In Vitro. 2013 Feb;27(1):339-48. doi: 10.1016/j.tiv.2012.08.020. Epub 2012 Aug 24. PMID: 22940465. 2. Charles AK, Darbre PD. Oestrogenic activity of benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) in MCF7 human breast cancer cells in vitro. J Appl Toxicol. 2009 Jul;29(5):422-34. doi: 10.1002/jat.1429. PMID: 19338011.
In vivo protocol:
TBD
1: Schroeder M, Mathys M, Ehrensperger N, Büchel M. γ-Unsaturated aldehydes as potential Lilial replacers. Chem Biodivers. 2014 Oct;11(10):1651-73. doi: 10.1002/cbdv.201400072. PubMed PMID: 25329790. 2: Usta J, Hachem Y, El-Rifai O, Bou-Moughlabey Y, Echtay K, Griffiths D, Nakkash-Chmaisse H, Makki RF. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants. Toxicol In Vitro. 2013 Feb;27(1):339-48. doi: 10.1016/j.tiv.2012.08.020. Epub 2012 Aug 24. PubMed PMID: 22940465. 3: Esmaeili A, Afshari S, Esmaeili D. Formation of harmful compounds in biotransformation of lilial by microorganisms isolated from human skin. Pharm Biol. 2015;53(12):1768-73. doi: 10.3109/13880209.2015.1005755. Epub 2015 Apr 9. PubMed PMID: 25856710. 4: Stueckler C, Mueller NJ, Winkler CK, Glueck SM, Gruber K, Steinkellner G, Faber K. Bioreduction of alpha-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilial and Helional. Dalton Trans. 2010 Sep 28;39(36):8472-6. doi: 10.1039/c002971h. Epub 2010 May 11. PubMed PMID: 20461254. 5: Arnau EG, Andersen KE, Bruze M, Frosch PJ, Johansen JD, Menné T, Rastogi SC, White IR, Lepoittevin JP. Identification of Lilial as a fragrance sensitizer in a perfume by bioassay-guided chemical fractionation and structure-activity relationships. Contact Dermatitis. 2000 Dec;43(6):351-8. PubMed PMID: 11140386. 6: Larsen WG. Allergic contact dermatitis to the fragrance material lilial. Contact Dermatitis. 1983 Mar;9(2):158-9. PubMed PMID: 6851531. 7: Charles AK, Darbre PD. Oestrogenic activity of benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) in MCF7 human breast cancer cells in vitro. J Appl Toxicol. 2009 Jul;29(5):422-34. doi: 10.1002/jat.1429. PubMed PMID: 19338011. 8: Doszczak L, Kraft P, Weber HP, Bertermann R, Triller A, Hatt H, Tacke R. Prediction of perception: probing the hOR17-4 olfactory receptor model with silicon analogues of bourgeonal and lilial. Angew Chem Int Ed Engl. 2007;46(18):3367-71. PubMed PMID: 17397127. 9: Godayol A, Besalú E, Anticó E, Sanchez JM. Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography. Chemosphere. 2015 Jan;119:363-370. doi: 10.1016/j.chemosphere.2014.06.072. Epub 2014 Jul 23. PubMed PMID: 25061941. 10: Hosoi J, Tsuchiya T. Regulation of cutaneous allergic reaction by odorant inhalation. J Invest Dermatol. 2000 Mar;114(3):541-4. PubMed PMID: 10692115. 11: Pluym N, Krnac D, Gilch G, Scherer M, Leibold E, Scherer G. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the human biomonitoring of non-occupational exposure to the fragrance 2-(4-tert-butylbenzyl)propionaldehyde (lysmeral). Anal Bioanal Chem. 2016 Aug;408(21):5873-82. doi: 10.1007/s00216-016-9702-x. Epub 2016 Jul 1. PubMed PMID: 27370687. 12: Di Sotto A, Maffei F, Hrelia P, Di Giacomo S, Pagano E, Borrelli F, Mazzanti G. Genotoxicity assessment of some cosmetic and food additives. Regul Toxicol Pharmacol. 2014 Feb;68(1):16-22. doi: 10.1016/j.yrtph.2013.11.003. Epub 2013 Nov 14. PubMed PMID: 24239523. 13: Pall ML. Two fragrance chemicals may act as toxicants via TRPA1 stimulation rather than via direct mitochondrial action. Toxicol In Vitro. 2013 Sep;27(6):2022. doi: 10.1016/j.tiv.2012.09.011. Epub 2012 Sep 25. PubMed PMID: 23022374. 14: Takeuchi H, Imanaka Y, Hirono J, Kurahashi T. Cross-adaptation between olfactory responses induced by two subgroups of odorant molecules. J Gen Physiol. 2003 Sep;122(3):255-64. PubMed PMID: 12939391; PubMed Central PMCID: PMC2234484. 15: Pérez-Outeiral J, Millán E, Garcia-Arrona R. Ultrasound-assisted emulsification microextraction coupled with high-performance liquid chromatography for the simultaneous determination of fragrance allergens in cosmetics and water. J Sep Sci. 2015 May;38(9):1561-9. doi: 10.1002/jssc.201401330. Epub 2015 Mar 26. PubMed PMID: 25707401. 16: Pangesti N, Weldegergis BT, Langendorf B, van Loon JJ, Dicke M, Pineda A. Rhizobacterial colonization of roots modulates plant volatile emission and enhances the attraction of a parasitoid wasp to host-infested plants. Oecologia. 2015 Aug;178(4):1169-80. doi: 10.1007/s00442-015-3277-7. Epub 2015 Mar 19. PubMed PMID: 25783487; PubMed Central PMCID: PMC4506461. 17: Wedemeyer H, Schild D. Chemosensitivity of the osphradium of the pond snail Lymnaea stagnalis. J Exp Biol. 1995;198(Pt 8):1743-54. PubMed PMID: 9319649. 18: Buśko M, Stuper K, Jeleń H, Góral T, Chmielewski J, Tyrakowska B, Perkowski J. Comparison of Volatiles Profile and Contents of Trichothecenes Group B, Ergosterol, and ATP of Bread Wheat, Durum Wheat, and Triticale Grain Naturally Contaminated by Mycobiota. Front Plant Sci. 2016 Aug 22;7:1243. doi: 10.3389/fpls.2016.01243. eCollection 2016. PubMed PMID: 27597856; PubMed Central PMCID: PMC4992695. 19: Zeng F, Xu P, Tan K, Zarbin PHG, Leal WS. Methyl dihydrojasmonate and lilial are the constituents with an "off-label" insect repellence in perfumes. PLoS One. 2018 Jun 19;13(6):e0199386. doi: 10.1371/journal.pone.0199386. eCollection 2018. PubMed PMID: 29920544; PubMed Central PMCID: PMC6007898. 20: Iida A, Kashiwayanagi M. Responses to putative second messengers and odorants in water nose olfactory neurons of Xenopus laevis. Chem Senses. 2000 Feb;25(1):55-9. PubMed PMID: 10667994.