1: Shou M, Terashima H, Aizawa S, Taga A, Yamamoto A, Kodama S. Simultaneous Enantioseparation of Aldohexoses and Aldopentoses Derivatized With L-Tryptophanamide by Reversed Phase HPLC Using Butylboronic Acid as a Complexation Reagent of Monosaccharides. Chirality. 2015 Jul;27(7):417-21. doi: 10.1002/chir.22456. Epub 2015 May 20. PubMed PMID: 25994510.
2: Kowalska-Baron A, Gałęcki K, Wysocki S. Temperature study of indole, tryptophan and N-acetyl-L-tryptophanamide (NATA) triplet-state quenching by iodide in aqueous solution. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jul;111:42-8. doi: 10.1016/j.saa.2013.03.086. Epub 2013 Mar 29. PubMed PMID: 23602958.
3: BERNHARD RA, NIEMANN C. A DILATOMETRIC INVESTIGATION OF THE ALPHA-CHYMOTRYPSIN-CATALYZED HYDROLYSIS OF NICOTINYL-L-TRYPTOPHANAMIDE. Arch Biochem Biophys. 1965 Apr;110:195-9. PubMed PMID: 14321852.
4: Andrews D, Trezeguet V, Merle M, Graves PV, Muench KH, Labouesse B. Tryptophanamide formation by Escherichia coli tryptophanyl-tRNA synthetase. Eur J Biochem. 1985 Jan 2;146(1):201-9. PubMed PMID: 3881255.
5: Cardenas AE, Jas GS, DeLeon KY, Hegefeld WA, Kuczera K, Elber R. Unassisted transport of N-acetyl-L-tryptophanamide through membrane: experiment and simulation of kinetics. J Phys Chem B. 2012 Mar 8;116(9):2739-50. doi: 10.1021/jp2102447. Epub 2012 Feb 22. PubMed PMID: 22313494; PubMed Central PMCID: PMC3302722.
6: Kowalska-Baron A, Chan M, Gałęcki K, Wysocki S. Photophysics of indole, tryptophan and N-acetyl-L-tryptophanamide (NATA): heavy atom effect. Spectrochim Acta A Mol Biomol Spectrosc. 2012 Dec;98:282-9. doi: 10.1016/j.saa.2012.08.017. Epub 2012 Aug 19. PubMed PMID: 22964241.
7: Karle IL. Comparison of stereospecific conformations for threo and erythro beta-hydroxy-N-acetyl-tryptophanamide. Int J Pept Protein Res. 1980 Nov;16(5):471-6. PubMed PMID: 7216622.
8: O'Leary MH, Kluetz MD. Identification of the rate-limiting step in the chymotrypsin-catalyzed hydrolysis of N-acetyl-L-tryptophanamide. J Am Chem Soc. 1970 Oct 7;92(20):6089-90. PubMed PMID: 5459201.
9: Davis DM, McLoskey D, Birch DJ, Gellert PR, Kittlety RS, Swart RM. The fluorescence and circular dichroism of proteins in reverse micelles: application to the photophysics of human serum albumin and N-acetyl-L-tryptophanamide. Biophys Chem. 1996 Jun 11;60(3):63-77. PubMed PMID: 8679927.
10: Himoe A, Parks PC, Hess GP. Investigations of the chymotrypsin-catalyzed hydrolysis of specific substrates. I. The pH dependence of the catalytic hydrolysis of N-acetyl-L-tryptophanamide by three forms of the enzyme at alkaline pH. J Biol Chem. 1967 Mar 10;242(5):919-29. PubMed PMID: 6020443.
11: Zelent B, Kuśba J, Gryczynski I, Johnson ML, Lakowicz JR. Time-resolved and steady-state fluorescence quenching of N-acetyl-L-tryptophanamide by acrylamide and iodide. Biophys Chem. 1998 Jul 13;73(1-2):53-75. PubMed PMID: 9697300.
12: Zelent B, Kuśba J, Gryczynski I, Johnson ML, Lakowicz JR. Distance-dependent fluorescence quenching ofN-acetyl-L-tryptophanamide by acrylamide. J Fluoresc. 1993 Sep;3(3):199-207. doi: 10.1007/BF00862743. PubMed PMID: 24234834.
13: O'Leary MH, Kluetz MD. Nitrogen isotope effects on the chymotrypsin-catalyzed hydrolysis of N-acetyl-L-tryptophanamide. J Am Chem Soc. 1972 May 17;94(10):3585-9. PubMed PMID: 5032959.
14: Gryczynski I, Malicka J, Lukomska J, Gryczynski Z, Lakowicz JR. Surface plasmon-coupled polarized emission of N-acetyl-l-tryptophanamide. Photochem Photobiol. 2004 Nov-Dec;80(3):482-5. PubMed PMID: 15623334.
15: Reddi E, Lambert CR, Jori G, Rodgers MA. Photokinetic and photophysical measurements of the sensitized photooxidation of the tryptophyl residue in N-acetyl tryptophanamide and in human serum albumin. Photochem Photobiol. 1987 Mar;45(3):345-51. PubMed PMID: 3562591.
16: Ruan K, Tian S, Lange R, Balny C. Pressure effects on tryptophan and its derivatives. Biochem Biophys Res Commun. 2000 Mar 24;269(3):681-6. PubMed PMID: 10720476.
17: El Guerdaoui A, Tijar R, El Merbouh B, Bourjila M, El Bouzaidi RD, El Gridani A. A comprehensive conformational space analysis of N-formyl-l-tryptophanamide system by using a genetic algorithm for multi-modal search. J Mol Graph Model. 2017 Aug;75:137-148. doi: 10.1016/j.jmgm.2017.05.008. Epub 2017 May 18. PubMed PMID: 28575796.
18: Silver MS, James SL. Surprising consequences of the tendency of pepsin to catalyze condensation reactions between small peptides. Biochim Biophys Acta. 1983 Feb 28;743(1):13-22. PubMed PMID: 6402022.
19: Stepp LR, Novakoski MA. Effect of 5-hydroxytryptamine on sodium- and potassium-dependent adenosine triphosphatase and its reactivity toward ouabain. Arch Biochem Biophys. 1997 Jan 1;337(1):43-53. PubMed PMID: 8990266.
20: Lee BL, Kuczera K, Middaugh CR, Jas GS. Permeation of the three aromatic dipeptides through lipid bilayers: Experimental and computational study. J Chem Phys. 2016 Jun 28;144(24):245103. doi: 10.1063/1.4954241. PubMed PMID: 27369545.