MedKoo Cat#: 584389 | Name: Scoparone
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Scoparone is a natural compound isolated from Artemisia capillaris. Traditionally used in Chinese herbal medicine to treat neonatal jaundice, this compound has been found to elicit anti-tumor effects against DU145 prostate cancer cells in part through inhibition of STAT3 activity.

Chemical Structure

Scoparone
Scoparone
CAS#120-08-1

Theoretical Analysis

MedKoo Cat#: 584389

Name: Scoparone

CAS#: 120-08-1

Chemical Formula: C11H10O4

Exact Mass: 206.0579

Molecular Weight: 206.20

Elemental Analysis: C, 64.08; H, 4.89; O, 31.04

Price and Availability

Size Price Availability Quantity
10mg USD 180.00
25mg USD 350.00
50mg USD 630.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Scoparone; Escoparone
IUPAC/Chemical Name
6,7-Dimethoxy-2-benzopyrone
InChi Key
GUAFOGOEJLSQBT-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H10O4/c1-13-9-5-7-3-4-11(12)15-8(7)6-10(9)14-2/h3-6H,1-2H3
SMILES Code
O=C1C=CC2=CC(OC)=C(OC)C=C2O1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Scoparone has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities.
In vitro activity:
Scoparone is a promising agent for non-small-cell-lung cancer (NSCLC) treatment. Scoparone induced apoptosis and ferroptosis in NSCLC cells. Scoparone activated the ROS/JNK/SP1/ACSL4 axis to trigger ferroptosis in NSCLC cells. Scoparone treatment led to FBW7-mediated ubiquitination and downregulation of Mcl-1. Scopaone also induced Bax activation in an ROS-dependent manner. Reference: Toxicol In Vitro. 2023 Sep;91:105627. https://pubmed.ncbi.nlm.nih.gov/37315743/
In vivo activity:
In a murine model of non-alcoholic fatty liver disease (NAFLD) into hepatocellular carcinoma (HCC), scopparone could ameliorate pathological alterations observed in HAFLD-HCC disease progression. Scoparone administration reverted upregulation of NF-kB p65 expression in NAFLD and NAFLD-HCC models. Scoparone reversed increased mRNA expression levels of NF-κB target genes, which were originally elevated in NAFLD-HCC. Scoparone counteracted MAPK/Akt signaling activation in the NAFLD-HCC model. Reference: Environ Toxicol. 2023 Jul 12. Preprint. https://pubmed.ncbi.nlm.nih.gov/37436232/
Solvent mg/mL mM
Solubility
DMF 25.0 121.24
DMSO 50.0 242.49
Ethanol 1.0 4.85
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 206.20 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Shen H, Wei Y, Yang Q, Cai Y, Zhu K, Chen X. Scoparone induces both apoptosis and ferroptosis via multiple mechanisms in non-small-cell lung cancer cells. Toxicol In Vitro. 2023 Sep;91:105627. doi: 10.1016/j.tiv.2023.105627. Epub 2023 Jun 12. PMID: 37315743. 2. Wu X, Li X, Li J, Zhao X, Cui Y, Eerdun C. Scoparone inhibits breast cancer cell viability through the NF‑κB signaling pathway. Exp Ther Med. 2023 May 17;26(1):328. doi: 10.3892/etm.2023.12027. PMID: 37346408; PMCID: PMC10280323. 3. Ye M, Liu C, Liu J, Lu F, Xue J, Li F, Tang Y. Scoparone inhibits the development of hepatocellular carcinoma by modulating the p38 MAPK/Akt/NF-κB signaling in nonalcoholic fatty liver disease mice. Environ Toxicol. 2023 Jul 12. doi: 10.1002/tox.23851. Epub ahead of print. PMID: 37436232. 4. Jiang Y, Xu J, Huang P, Yang L, Liu Y, Li Y, Wang J, Song H, Zheng P. Scoparone Improves Nonalcoholic Steatohepatitis Through Alleviating JNK/Sab Signaling Pathway-Mediated Mitochondrial Dysfunction. Front Pharmacol. 2022 May 3;13:863756. doi: 10.3389/fphar.2022.863756. PMID: 35592421; PMCID: PMC9110978.
In vitro protocol:
1. Shen H, Wei Y, Yang Q, Cai Y, Zhu K, Chen X. Scoparone induces both apoptosis and ferroptosis via multiple mechanisms in non-small-cell lung cancer cells. Toxicol In Vitro. 2023 Sep;91:105627. doi: 10.1016/j.tiv.2023.105627. Epub 2023 Jun 12. PMID: 37315743. 2. Wu X, Li X, Li J, Zhao X, Cui Y, Eerdun C. Scoparone inhibits breast cancer cell viability through the NF‑κB signaling pathway. Exp Ther Med. 2023 May 17;26(1):328. doi: 10.3892/etm.2023.12027. PMID: 37346408; PMCID: PMC10280323.
In vivo protocol:
1. Ye M, Liu C, Liu J, Lu F, Xue J, Li F, Tang Y. Scoparone inhibits the development of hepatocellular carcinoma by modulating the p38 MAPK/Akt/NF-κB signaling in nonalcoholic fatty liver disease mice. Environ Toxicol. 2023 Jul 12. doi: 10.1002/tox.23851. Epub ahead of print. PMID: 37436232. 2. Jiang Y, Xu J, Huang P, Yang L, Liu Y, Li Y, Wang J, Song H, Zheng P. Scoparone Improves Nonalcoholic Steatohepatitis Through Alleviating JNK/Sab Signaling Pathway-Mediated Mitochondrial Dysfunction. Front Pharmacol. 2022 May 3;13:863756. doi: 10.3389/fphar.2022.863756. PMID: 35592421; PMCID: PMC9110978.
1: Zhang J, Lin Z, Zhang Y, Gu H, Li W. Bioinformatics-based drug repositioning and prediction of the main active ingredients and potential mechanisms of action for the efficacy of Dan-Lou tablet. Sci Rep. 2024 Oct 7;14(1):23297. doi: 10.1038/s41598-024-74243-5. PMID: 39375410; PMCID: PMC11458610. 2: Huang P, Yang L, Liu T, Jiang Y, Chen Z, Song H, Zheng P. Scoparone alleviates nonalcoholic fatty liver disease by modulating the PPARα signaling pathway. Eur J Pharmacol. 2024 Oct 4;984:177033. doi: 10.1016/j.ejphar.2024.177033. Epub ahead of print. PMID: 39368602. 3: Su D, Li Q, Lai X, Song Y, Li H, Ai Z, Zhang Q, Shao W, Yang M, Zhu G. Sargassum pallidum reduces inflammation to exert antidepressant effect by regulating intestinal microbiome and ERK1/2/P38 signaling pathway. Front Pharmacol. 2024 Jul 18;15:1424834. doi: 10.3389/fphar.2024.1424834. PMID: 39092228; PMCID: PMC11291328. 4: Zhou H, Wan F, Lai X, Yan F, Zhang M, Ni Y, Guo Y, Zhang P, Guo F, Klakong M, Peng G, Guo W, Zeng X, Zhang Z, Pan X, Liu Y, Yang L, Li S, Ding W. Synergistic action and mechanism of scoparone, a key bioactive component of Artemisia capillaris, and spirodiclofen against spider mites. Pest Manag Sci. 2024 Oct;80(10):5035-5049. doi: 10.1002/ps.8228. Epub 2024 Jun 7. PMID: 38847112. 5: Lin C, Su T, Ye YJ. Mechanistic analyses reveal that Pueraria montana var. lobata (Willd.) is effective in inhibiting ovarian cancer progression. Naunyn Schmiedebergs Arch Pharmacol. 2024 May 29. doi: 10.1007/s00210-024-03158-9. Epub ahead of print. PMID: 38809293. 6: Song Q, Zhao Z, Liu H, Zhang J, Wang Z, Zhang Y, Ma G, Ge S. Pseudotargeted lipidomics analysis of scoparone on glycerophospholipid metabolism in non- alcoholic steatohepatitis mice by LC-MRM-MS. PeerJ. 2024 May 21;12:e17380. doi: 10.7717/peerj.17380. PMID: 38799063; PMCID: PMC11122033. 7: Irfan E, Dilshad E, Ahmad F, Almajhdi FN, Hussain T, Abdi G, Waheed Y. Phytoconstituents of Artemisia Annua as potential inhibitors of SARS CoV2 main protease: an in silico study. BMC Infect Dis. 2024 May 15;24(1):495. doi: 10.1186/s12879-024-09387-w. PMID: 38750422; PMCID: PMC11094927. 8: Permadi N, Nurzaman M, Doni F, Julaeha E. Elucidation of the composition, antioxidant, and antimicrobial properties of essential oil and extract from Citrus aurantifolia (Christm.) Swingle peel. Saudi J Biol Sci. 2024 Jun;31(6):103987. doi: 10.1016/j.sjbs.2024.103987. Epub 2024 Apr 5. PMID: 38617568; PMCID: PMC11007538. 9: Li C, Li X, Zeng J, Cai R, Chen S, Chen B, Zhao X. Detection of Adulterated Naodesheng Tablet (Naodesheng Pian) via In-Depth Chemical Analysis and Subsequent Reconstruction of Its Pharmacopoeia Q-Markers. Molecules. 2024 Mar 20;29(6):1392. doi: 10.3390/molecules29061392. PMID: 38543029; PMCID: PMC10974483. 10: Liang J, Xi Y, Li J, Xu S, Zheng Y, Xu M, Zheng Z, Deng X. Metabolomic Profiling Reveals the Quality Variations in Citri Reticulatae Pericarpium (Citrus reticulata Blanco cv. Chachiensis) with Different Storage Ages in Response to "Candidatus Liberibacter Asiaticus" Infection. Foods. 2024 Mar 8;13(6):827. doi: 10.3390/foods13060827. PMID: 38540817; PMCID: PMC10969107. 11: Meng Q, Zhu H, Li Y, Peng X, Wang T, Huang H, Zhou H, Liu Y, Ru S, Wu J, Ma Y. Quantitative proteomics reveals the protective effects of Yinchenzhufu decoction against cholestatic liver fibrosis in mice by inhibiting the PDGFRβ/PI3K/AKT pathway. Front Pharmacol. 2024 Feb 26;15:1341020. doi: 10.3389/fphar.2024.1341020. PMID: 38469403; PMCID: PMC10926276. 12: Singh R, Verma R, Sati N, Ansari WA, Khan MF. Antioxidant constituents from Ribes glaciale Wall.: bioassay targeted in-vitro and in- silico evaluation. Nat Prod Res. 2024 Mar 10:1-4. doi: 10.1080/14786419.2024.2326955. Epub ahead of print. PMID: 38462728. 13: Kim SW, Kim CW, Kim HS. Scoparone attenuates PD-L1 expression in human breast cancer cells by MKP-3 upregulation. Anim Cells Syst (Seoul). 2024 Feb 9;28(1):55-65. doi: 10.1080/19768354.2024.2315950. PMID: 38348341; PMCID: PMC10860470. 14: Zheng B, Song W, Liu C, Kou X, Yu Y, Wang Y, Ma J, Liu Y, Jiang J, Xue Z. Scoparone from Artemisia capillaris Thunb. induces apoptosis in HepG2 cells via activation of both intracellular and extracellular pathways. Nat Prod Res. 2023 Dec 26:1-7. doi: 10.1080/14786419.2023.2298383. Epub ahead of print. PMID: 38148156. 15: Zhao T, Lun S, Yan M, Park J, Wang S, Chen C. 6,7-Dimethoxycoumarin, Gardenoside and Rhein combination improves non-alcoholic fatty liver disease in rats. J Ethnopharmacol. 2024 Mar 25;322:117646. doi: 10.1016/j.jep.2023.117646. Epub 2023 Dec 20. PMID: 38135236. 16: Huang S, Lin L, Ma Y, Zhu Q, Weng N. Scoparone induces autophagic cell death via the PAK1/AKT axis in colorectal cancer. Eur J Pharmacol. 2023 Nov 15;959:176091. doi: 10.1016/j.ejphar.2023.176091. Epub 2023 Oct 5. PMID: 37805132. 17: Lv Z, Yao G, Ge M, Bai Y, Wu M, Ouyang H, Feng J, He J. Qualitative identification and quantitative comparison of Physochlainae Radix from different regions based on chemometric methods. J Sep Sci. 2023 Nov;46(22):e2300475. doi: 10.1002/jssc.202300475. Epub 2023 Sep 22. PMID: 37735985. 18: Zeng J, Li X, Cai R, Chen B, Li C, Hu Q, Sun Y. Proposing anti- counterfeiting pharmacopoeia quality markers for Shenlingbaizhu granule based on UHPLC-Q-orbitrap-MS identification. Phytochem Anal. 2024 Mar;35(2):220-238. doi: 10.1002/pca.3284. Epub 2023 Sep 21. PMID: 37735858. 19: Kumar C, Chibber P, Painuli R, Haq SA, Vishwakarma RA, Singh G, Satti NK, Phatake RS. Scoparone chemical modification into semi-synthetic analogues featuring 3-substitution for their anti-inflammatory activity. Mol Divers. 2024 Aug;28(4):2467-2478. doi: 10.1007/s11030-023-10687-7. Epub 2023 Jul 19. PMID: 37468705. 20: Zhou Y, Han Z, Zhao Z, Zhang J. Scoparone attenuates glioma progression and improves the toxicity of temozolomide by suppressing RhoA/ROCK1 signaling. Environ Toxicol. 2024 Feb;39(2):562-571. doi: 10.1002/tox.23882. Epub 2023 Jul 14. PMID: 37449671.