MedKoo Cat#: 585222 | Name: Scopoletin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Scopoletin is an active coumarin with anti-hyperuricemic effect. Scopoletin has been seen to inhibit L. monocytogenes SrtA activity in vitro and prevent biofilm formation.

Chemical Structure

Scopoletin
Scopoletin
CAS#92-61-5

Theoretical Analysis

MedKoo Cat#: 585222

Name: Scopoletin

CAS#: 92-61-5

Chemical Formula: C10H8O4

Exact Mass: 192.0423

Molecular Weight: 192.17

Elemental Analysis: C, 62.50; H, 4.20; O, 33.30

Price and Availability

Size Price Availability Quantity
50mg USD 350.00
100mg USD 600.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Scopoletin
IUPAC/Chemical Name
2H-1-Benzopyran-2-one, 7-hydroxy-6-methoxy-
InChi Key
RODXRVNMMDRFIK-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H8O4/c1-13-9-4-6-2-3-10(12)14-8(6)5-7(9)11/h2-5,11H,1H3
SMILES Code
O=C1C=CC2=CC(OC)=C(O)C=C2O1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Scopoletin is an inhibitor of acetylcholinesterase (AChE).
In vitro activity:
Scopoletin is a promising treatment for anti-HIV-1 latency, because it activates latent HIV-1 without causing global T-cell activation. In a Jurkat T cell model of HIV-1 latency, it was found that Scopoletin reactivated latent HIV-1 replication with a similar potency to Prostratin and that Scopoletin-induced HIV-1 reactivation involves the NF-κB signaling pathway. Reference: Int J Mol Sci. 2023 Aug 10;24(16):12649. https://pubmed.ncbi.nlm.nih.gov/37628826/
In vivo activity:
Scopoletin has potential in antibiabetic drug development due to its ability to reverse insulin resistance. In a model of high-fructose high-fat diet (HFHFD)-induced diabetes in rats, Scopoletin-treated groups showed a significant decline in glucose levels, especially in the medium dose and high dose groups. Two weeks after scopoletin treatment, β-cell function significantly improved in the medium dose group. Reference: J Med Food. 2023 Apr;26(4):270-274. https://pubmed.ncbi.nlm.nih.gov/36930782/
Solvent mg/mL mM
Solubility
DMSO 62.5 325.23
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 192.17 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Zhu Y, Jiang Z, Liu L, Yang X, Li M, Cheng Y, Xu J, Yin C, Zhu H. Scopoletin Reactivates Latent HIV-1 by Inducing NF-κB Expression without Global T Cell Activation. Int J Mol Sci. 2023 Aug 10;24(16):12649. doi: 10.3390/ijms241612649. PMID: 37628826; PMCID: PMC10454185. 2. Park JE, Han JS. Scopoletin protects INS-1 pancreatic β cells from glucotoxicity by reducing oxidative stress and apoptosis. Toxicol In Vitro. 2023 Dec;93:105665. doi: 10.1016/j.tiv.2023.105665. Epub 2023 Aug 23. PMID: 37619648. 3. Sharma S, Sharma V, Taneja S, Alka Bhatia, Anand A, Patil AN, Banerjee D. Scopoletin a potential phytochemical therapy for antitubercular treatment drug induced liver injury (ATT-DILI) model in Wistar rats. J Complement Integr Med. 2023 Sep 22. doi: 10.1515/jcim-2023-0168. Epub ahead of print. PMID: 37732506. 4. Batra GK, Anand A, Sharma S, Sharma S, Bhansali S, Patil AN. Scopoletin Improves Glucose Homeostasis in the High-Fructose High-Fat Diet-Induced Diabetes Model in Wistar Rats. J Med Food. 2023 Apr;26(4):270-274. doi: 10.1089/jmf.2022.K.0153. Epub 2023 Mar 17. PMID: 36930782.
In vitro protocol:
1. Zhu Y, Jiang Z, Liu L, Yang X, Li M, Cheng Y, Xu J, Yin C, Zhu H. Scopoletin Reactivates Latent HIV-1 by Inducing NF-κB Expression without Global T Cell Activation. Int J Mol Sci. 2023 Aug 10;24(16):12649. doi: 10.3390/ijms241612649. PMID: 37628826; PMCID: PMC10454185. 2. Park JE, Han JS. Scopoletin protects INS-1 pancreatic β cells from glucotoxicity by reducing oxidative stress and apoptosis. Toxicol In Vitro. 2023 Dec;93:105665. doi: 10.1016/j.tiv.2023.105665. Epub 2023 Aug 23. PMID: 37619648.
In vivo protocol:
1. Sharma S, Sharma V, Taneja S, Alka Bhatia, Anand A, Patil AN, Banerjee D. Scopoletin a potential phytochemical therapy for antitubercular treatment drug induced liver injury (ATT-DILI) model in Wistar rats. J Complement Integr Med. 2023 Sep 22. doi: 10.1515/jcim-2023-0168. Epub ahead of print. PMID: 37732506. 2. Batra GK, Anand A, Sharma S, Sharma S, Bhansali S, Patil AN. Scopoletin Improves Glucose Homeostasis in the High-Fructose High-Fat Diet-Induced Diabetes Model in Wistar Rats. J Med Food. 2023 Apr;26(4):270-274. doi: 10.1089/jmf.2022.K.0153. Epub 2023 Mar 17. PMID: 36930782.
1: Datta S, Paul S, Ballabh L, Mitra A. Histochemical and molecular analyses reveal an insight into the scent volatiles synthesis and emission in ephemeral flowers of Murraya paniculata (L.) Jack. Planta. 2024 Oct 18;260(5):119. doi: 10.1007/s00425-024-04552-6. PMID: 39422757. 2: Straube H. New wine in old skins: Scopoletin biosynthesis in Cotton. Plant Physiol. 2024 Oct 4:kiae527. doi: 10.1093/plphys/kiae527. Epub ahead of print. PMID: 39365023. 3: Şeker Karatoprak G, Dumlupınar B, Celep E, Kurt Celep I, Küpeli Akkol E, Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front Pharmacol. 2024 Sep 16;15:1423480. doi: 10.3389/fphar.2024.1423480. PMID: 39364049; PMCID: PMC11447453. 4: Elbakush AM, Trunschke O, Shafeeq S, Römling U, Gomelsky M. Maple compounds prevent biofilm formation in Listeria monocytogenes via sortase inhibition. Front Microbiol. 2024 Sep 16;15:1436476. doi: 10.3389/fmicb.2024.1436476. PMID: 39351304; PMCID: PMC11439720. 5: Ahmed S, Zengin G, Selvi S, Ak G, Cziáky Z, Jekő J, Rodrigues MJ, Custodio L, Venanzoni R, Flores GA, Cusumano G, Angelini P. Characterising the Metabolomic Diversity and Biological Potentials of Extracts from Different Parts of Two Cistus Species Using UHPLC-MS/MS and In Vitro Techniques. Pathogens. 2024 Sep 13;13(9):795. doi: 10.3390/pathogens13090795. PMID: 39338986; PMCID: PMC11435373. 6: Limsakul S, Monthakantirat O, Chulikhit Y, Maneenet J, Khamphukdee C, Chotritthirong Y, Phasomsap A, Boonyarat C, Daodee S. Optimizing Extraction, Evaluating Antioxidant Activity, and Analyzing Bioactive Compounds in Trikaysornmas Formula. Adv Pharmacol Pharm Sci. 2024 Sep 18;2024:8335536. doi: 10.1155/2024/8335536. PMID: 39328583; PMCID: PMC11424859. 7: Gao L, Wang P, Yan X, Li J, Ma L, Hu M, Ge X, Li F, Hou Y. Feruloyl-CoA 6'-hydroxylase-mediated scopoletin accumulation enhances cotton resistance to Verticillium dahliae. Plant Physiol. 2024 Sep 26:kiae508. doi: 10.1093/plphys/kiae508. Epub ahead of print. PMID: 39324621. 8: Tan N, Wang Y, Ren L, Tie F, Hu N, Wang H, Dong Q. Network Pharmacology and Molecular Dynamics Simulations Reveal the Mechanism of Total Alkaloid Components in Anisodus tanguticus (Maxim.) Pascher in Treating Inflammation and Pain. Chem Biodivers. 2024 Sep 23:e202401199. doi: 10.1002/cbdv.202401199. Epub ahead of print. PMID: 39313870. 9: Yang W, Tang S, Xu R, Zhang L, Zhou Z, Yang Y, Li Y, Xiang H. LC-MS based metabolomics identification of natural metabolites against Fusarium oxysporum. Front Plant Sci. 2024 Sep 3;15:1435963. doi: 10.3389/fpls.2024.1435963. PMID: 39290733; PMCID: PMC11405212. 10: Ihnatowicz A, Siwinska J, Perkowska I, Grosjean J, Hehn A, Bourgaud F, Lojkowska E, Olry A. Genes to specialized metabolites: accumulation of scopoletin, umbelliferone and their glycosides in natural populations of Arabidopsis thaliana. BMC Plant Biol. 2024 Aug 27;24(1):806. doi: 10.1186/s12870-024-05491-w. PMID: 39187756; PMCID: PMC11348552. 11: Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti- Alzheimer drug discovery. Bioorg Med Chem Lett. 2024 Oct 1;111:129912. doi: 10.1016/j.bmcl.2024.129912. Epub 2024 Jul 30. PMID: 39089526. 12: Kaunda JS, Liu J, Xu Y, Chen Y, Yue C, Zhang X, Zhang R, Amin M, Xiao W, Li H, Li X. Constituents from leaves of Macaranga hemsleyana. Chin Herb Med. 2023 Aug 19;16(3):481-486. doi: 10.1016/j.chmed.2023.03.006. PMID: 39072199; PMCID: PMC11283217. 13: Elsadek MA, Wang R, Xu K, Wang T, Zhang A, Qi Z, Liu B, Yuan L, Chen L. Tuber quality enhancement via grafting potato onto a wooden goji rootstock through vitalizing multi-pathways. Plant Physiol Biochem. 2024 Sep;214:108927. doi: 10.1016/j.plaphy.2024.108927. Epub 2024 Jul 18. PMID: 39067104. 14: Yarman A. Effect of Various Carbon Electrodes on MIP-Based Sensing Proteins Using Poly(Scopoletin): A Case Study of Ferritin. Biomimetics (Basel). 2024 Jul 13;9(7):426. doi: 10.3390/biomimetics9070426. PMID: 39056867; PMCID: PMC11274590. 15: Ma L, Song N, Duan Q, Du W, Li X, Jia W, Cui G, Wang J, Wu J. JA/ethylene and NaWRKY6/3 regulated Alternaria resistance depends on ethylene response factor 1B-like in wild tobacco. J Exp Bot. 2024 Jul 24:erae320. doi: 10.1093/jxb/erae320. Epub ahead of print. PMID: 39046351. 16: Wang JM, Li J, Wang YY, Yu DX, Kang HJ, Qian DW, Guo S, Duan JA. [Comparison of multi-type chemical compounds in fruits of Lycium and correlations between compounds and traits]. Zhongguo Zhong Yao Za Zhi. 2024 Jul;49(13):3462-3472. Chinese. doi: 10.19540/j.cnki.cjcmm.20240414.104. PMID: 39041118. 17: Kim T, Han DG, Yoon IS. A simple and sensitive high-performance liquid chromatographic method combined with fluorescence detection for bioanalysis of scopoletin in rat plasma: Application to a pharmacokinetic study. Biomed Chromatogr. 2024 Oct;38(10):e5959. doi: 10.1002/bmc.5959. Epub 2024 Jul 22. PMID: 39039810. 18: Rolli E, Ghitti E, Mapelli F, Borin S. Polychlorinated biphenyls modify Arabidopsis root exudation pattern to accommodate degrading bacteria, showing strain and functional trait specificity. Front Plant Sci. 2024 Jul 5;15:1429096. doi: 10.3389/fpls.2024.1429096. PMID: 39036359; PMCID: PMC11258928. 19: He S, Gao J, Li B, Luo Z, Liu P, Xu X, Wu M, Yang J, He X, Wang Z. NtWIN1 regulates the biosynthesis of scopoletin and chlorogenic acid by targeting NtF6'H1 and NtCCoAMT genes in Nicotiana tabacum. Plant Physiol Biochem. 2024 Sep;214:108937. doi: 10.1016/j.plaphy.2024.108937. Epub 2024 Jul 14. PMID: 39018774. 20: Tao Y, Pu J, Wang P. Ethnobotany, phytochemistry, pharmacology and quality control of Peucedanum decursivum (Miq.) Maxim: A critical review. J Ethnopharmacol. 2024 Nov 15;334:118542. doi: 10.1016/j.jep.2024.118542. Epub 2024 Jul 9. PMID: 38992404.