1: Wang C, Jia Q, Zeng J, Chen R, Xie W. Structural insight into the
methyltransfer mechanism of the bifunctional Trm5. Sci Adv. 2017 Dec
1;3(12):e1700195. doi: 10.1126/sciadv.1700195. eCollection 2017 Dec. PubMed PMID:
29214216; PubMed Central PMCID: PMC5714064.
2: Fandilolu PM, Kamble AS, Sambhare SB, Sonawane KD. Conformational preferences and structural analysis of hypermodified nucleoside, peroxywybutosine (o2yW)
found at 37(th) position in anticodon loop of tRNA(Phe) and its role in
modulating UUC codon-anticodon interactions. Gene. 2018 Jan 30;641:310-325. doi: 10.1016/j.gene.2017.10.072. Epub 2017 Oct 26. PubMed PMID: 29107006.
3: Wu J, Jia Q, Wu S, Zeng H, Sun Y, Wang C, Ge R, Xie W. The crystal structure
of the Pyrococcus abyssi mono-functional methyltransferase PaTrm5b. Biochem
Biophys Res Commun. 2017 Nov 4;493(1):240-245. doi: 10.1016/j.bbrc.2017.09.038.
Epub 2017 Sep 11. PubMed PMID: 28911863.
4: Urbonavičius J, Rutkienė R, Lopato A, Tauraitė D, Stankevičiūtė J, Aučynaitė
A, Kaliniene L, van Tilbeurgh H, Meškys R. Evolution of tRNAPhe:imG2
methyltransferases involved in the biosynthesis of wyosine derivatives in
Archaea. RNA. 2016 Dec;22(12):1871-1883. Epub 2016 Oct 20. PubMed PMID: 27852927;
PubMed Central PMCID: PMC5113207.
5: Wang C, Jia Q, Chen R, Wei Y, Li J, Ma J, Xie W. Crystal structures of the
bifunctional tRNA methyltransferase Trm5a. Sci Rep. 2016 Sep 15;6:33553. doi:
10.1038/srep33553. PubMed PMID: 27629654; PubMed Central PMCID: PMC5024318.
6: Jahnz-Wechmann Z, Framski GR, Januszczyk PA, Boryski J. Base-Modified
Nucleosides: Etheno Derivatives. Front Chem. 2016 Apr 28;4:19. doi:
10.3389/fchem.2016.00019. eCollection 2016. Review. PubMed PMID: 27200341; PubMed
Central PMCID: PMC4848297.
7: Sample PJ, Kořený L, Paris Z, Gaston KW, Rubio MA, Fleming IM, Hinger S,
Horáková E, Limbach PA, Lukeš J, Alfonzo JD. A common tRNA modification at an
unusual location: the discovery of wyosine biosynthesis in mitochondria. Nucleic Acids Res. 2015 Apr 30;43(8):4262-73. doi: 10.1093/nar/gkv286. Epub 2015 Apr 6.
PubMed PMID: 25845597; PubMed Central PMCID: PMC4417183.
8: Urbonavičius J, Meškys R, Grosjean H. Biosynthesis of wyosine derivatives in
tRNA(Phe) of Archaea: role of a remarkable bifunctional tRNA(Phe):m1G/imG2
methyltransferase. RNA. 2014 Jun;20(6):747-53. doi: 10.1261/rna.043315.113.
Review. PubMed PMID: 24837075; PubMed Central PMCID: PMC4024628.
9: Young AP, Bandarian V. Radical mediated ring formation in the biosynthesis of the hypermodified tRNA base wybutosine. Curr Opin Chem Biol. 2013
Aug;17(4):613-8. doi: 10.1016/j.cbpa.2013.05.035. Epub 2013 Jul 12. Review.
PubMed PMID: 23856057; PubMed Central PMCID: PMC4320972.
10: Baranowski D, Golankiewicz B, Folkman W, Popenda M. 2-Methylwyosine, a
nucleoside with restricted anti conformation in the east region enforced by
nucleobase moiety modification: synthesis and conformational analysis by NMR and molecular dynamics. Nucleosides Nucleotides Nucleic Acids. 2012;31(10):707-19.
doi: 10.1080/15257770.2012.724133. PubMed PMID: 23067123.
11: Perche-Letuvée P, Kathirvelu V, Berggren G, Clemancey M, Latour JM, Maurel V,
Douki T, Armengaud J, Mulliez E, Fontecave M, Garcia-Serres R, Gambarelli S, Atta
M. 4-Demethylwyosine synthase from Pyrococcus abyssi is a
radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S](+2) cluster
that interacts with the pyruvate co-substrate. J Biol Chem. 2012 Nov
30;287(49):41174-85. doi: 10.1074/jbc.M112.405019. Epub 2012 Oct 5. PubMed PMID: 23043105; PubMed Central PMCID: PMC3510817.
12: de Crécy-Lagard V, Brochier-Armanet C, Urbonavicius J, Fernandez B, Phillips G, Lyons B, Noma A, Alvarez S, Droogmans L, Armengaud J, Grosjean H. Biosynthesis
of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea.
Mol Biol Evol. 2010 Sep;27(9):2062-77. doi: 10.1093/molbev/msq096. Epub 2010 Apr 9. PubMed PMID: 20382657; PubMed Central PMCID: PMC4481705.
13: Suzuki Y, Noma A, Suzuki T, Senda M, Senda T, Ishitani R, Nureki O. Crystal
structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA. J Mol Biol. 2007 Oct 5;372(5):1204-14. Epub 2007 Jul 26. PubMed PMID:
17727881.
14: Waas WF, Druzina Z, Hanan M, Schimmel P. Role of a tRNA base modification and
its precursors in frameshifting in eukaryotes. J Biol Chem. 2007 Sep
7;282(36):26026-34. Epub 2007 Jul 9. PubMed PMID: 17623669.
15: Waas WF, de Crécy-Lagard V, Schimmel P. Discovery of a gene family critical
to wyosine base formation in a subset of phenylalanine-specific transfer RNAs. J Biol Chem. 2005 Nov 11;280(45):37616-22. Epub 2005 Sep 13. PubMed PMID: 16162496.
16: Baranowski D, Golankiewicz B, Plavec J. Conformationally restricted
2-substituted wyosine derivatives. 1H, 13C, and 15N NMR study. Nucleosides
Nucleotides Nucleic Acids. 2003 May-Aug;22(5-8):1669-72. PubMed PMID: 14565491.
17: Baranowski D, Golankiewicz B, Plavec J. Conformationally constrained
tricyclic nucleosides. Role of electronic and steric factors. Nucleic Acids Res
Suppl. 2003;(3):99-100. PubMed PMID: 14510399.
18: Itaya T, Kanai T, Sawada T. Structure of wyosine, the condensed tricyclic
nucleoside of torula yeast phenylalanine transfer ribonucleic acid. Chem Pharm
Bull (Tokyo). 2002 Apr;50(4):547-8. PubMed PMID: 11964008.
19: McCloskey JA, Graham DE, Zhou S, Crain PF, Ibba M, Konisky J, Söll D, Olsen
GJ. Post-transcriptional modification in archaeal tRNAs: identities and
phylogenetic relations of nucleotides from mesophilic and hyperthermophilic
Methanococcales. Nucleic Acids Res. 2001 Nov 15;29(22):4699-706. PubMed PMID:
11713320; PubMed Central PMCID: PMC92529.
20: Golankiewicz B. Synthetic and biological applications of tricyclic analogues of guanosine. Acta Biochim Pol. 1996;43(1):53-64. Review. PubMed PMID: 8790712.