MedKoo Cat#: 530932 | Name: PZ-II-029
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

PZ-II-029 is a α6β3γ2-selective GABAA channel modulator with applications in treating inflammatory and nociplastic pain.

Chemical Structure

PZ-II-029
PZ-II-029
CAS#164025-44-9

Theoretical Analysis

MedKoo Cat#: 530932

Name: PZ-II-029

CAS#: 164025-44-9

Chemical Formula: C18H15N3O3

Exact Mass: 321.1113

Molecular Weight: 321.34

Elemental Analysis: C, 67.28; H, 4.71; N, 13.08; O, 14.94

Price and Availability

Size Price Availability Quantity
25mg USD 800.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
PZ-II-029; PZII-029; PZ II-029; PZ-II029; PZII029; PZ II029;
IUPAC/Chemical Name
2,5-Dihydro-7-methoxy-2-(4-methoxyphenyl)-3H-pyrazolo[4,3-c]quinolin-3-one
InChi Key
IPYGULVOAIXELM-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H15N3O3/c1-23-12-5-3-11(4-6-12)21-18(22)15-10-19-16-9-13(24-2)7-8-14(16)17(15)20-21/h3-10,19H,1-2H3
SMILES Code
O=C1N(C2=CC=C(OC)C=C2)N=C3C1=CNC4=C3C=CC(OC)=C4
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
PZ-II-029 is a specific postitive modulator of GABAA channels composed of α6β3γ2 subunits.
In vitro activity:
To be determined
In vivo activity:
In male Sprague-Dawley rats, PZ-II-029 and its deuterated analogues are not prone to untoward interactions with benzodiazepines and may indeed completely abolish their ataxic action, seen at therapeutic, and especially toxic concentrations. They showed a safe behavioral profile and prevented the ataxic effects of benzodiazepines like diazepam, suggesting their potential to counteract such effects at therapeutic and potentially toxic concentrations. Reference: Basic Clin Pharmacol Toxicol. 2022 Dec;131(6):514-524. https://pubmed.ncbi.nlm.nih.gov/36180380/
Solvent mg/mL mM
Solubility
DMSO 10.0 31.12
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 321.34 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Divović Matović B, Knutson D, Mitrović J, Stevanović V, Stanojević B, Savić S, Cook JM, Savić MM. Behavioural interaction of pyrazoloquinolinone positive allosteric modulators at α6GABAA receptors and diazepam in rats: Anti-diazepam-induced ataxia action as a structure-dependent feature. Basic Clin Pharmacol Toxicol. 2022 Dec;131(6):514-524. doi: 10.1111/bcpt.13801. Epub 2022 Oct 8. PMID: 36180380.
In vitro protocol:
To be determined
In vivo protocol:
1. Divović Matović B, Knutson D, Mitrović J, Stevanović V, Stanojević B, Savić S, Cook JM, Savić MM. Behavioural interaction of pyrazoloquinolinone positive allosteric modulators at α6GABAA receptors and diazepam in rats: Anti-diazepam-induced ataxia action as a structure-dependent feature. Basic Clin Pharmacol Toxicol. 2022 Dec;131(6):514-524. doi: 10.1111/bcpt.13801. Epub 2022 Oct 8. PMID: 36180380.
1: Ghorbanalipoor S, Matsumoto K, Gross N, Heimberg L, Krause M, Veldkamp W, Magens M, Zanken J, Neuschutz KJ, De Luca DA, Kridin K, Vidarsson G, Chakievska L, Visser R, Kunzel S, Recke A, Gupta Y, Boch K, Vorobyev A, Kalies K, Manz RA, Bieber K, Ludwig RJ. High throughput screening identifies repurposable drugs for modulation of innate and acquired immune responses. J Autoimmun. 2024 Sep;148:103302. doi: 10.1016/j.jaut.2024.103302. Epub 2024 Aug 19. PMID: 39163739. 2: Brambillasca S, Cera MR, Andronache A, Dey SK, Fagá G, Fancelli D, Frittoli E, Pasi M, Robusto M, Varasi M, Scita G, Mercurio C. Novel selective inhibitors of macropinocytosis-dependent growth in pancreatic ductal carcinoma. Biomed Pharmacother. 2024 Aug;177:116991. doi: 10.1016/j.biopha.2024.116991. Epub 2024 Jun 21. PMID: 38906021; PMCID: PMC11287759. 3: Diaz D, Bergdorf K, Loberg MA, Phifer CJ, Xu GJ, Sheng Q, Chen SC, Byrant JM, Tigue ML, Hartmann H, Rohde SL, Netterville JL, Baregamian N, Goettel JA, Ye F, Lee E, Weiss VL. Wnt/β-catenin signaling is a therapeutic target in anaplastic thyroid carcinoma. Endocrine. 2024 May 28. doi: 10.1007/s12020-024-03887-0. Epub ahead of print. PMID: 38806891. 4: Majumder M, Janakiraman H, Chakraborty P, Vijayakumar A, Mayhue S, Yu H, Dincman T, Martin R, O'Quinn E, Mehrotra S, Palanisamy V. RNA-binding protein HuR reprograms immune T cells and promotes oral squamous cell carcinoma. Oral Oncol Rep. 2024 Jun;10:100296. doi: 10.1016/j.oor.2024.100296. Epub 2024 Mar 21. PMID: 38681116; PMCID: PMC11044901. 5: Dion W, Tao Y, Chambers M, Zhao S, Arbuckle RK, Sun M, Kubra S, Nie Y, Ye M, Larsen MB, Camarco D, Ickes E, DuPont C, Wang H, Wang B, Liu S, Pi S, Chen BB, Chen Y, Chen X, Zhu B. Nuclear speckle rejuvenation alleviates proteinopathies at the expense of YAP1. bioRxiv [Preprint]. 2024 Apr 21:2024.04.18.590103. doi: 10.1101/2024.04.18.590103. PMID: 38659924; PMCID: PMC11042303. 6: Kamata Y, Kato R, Tominaga M, Toyama S, Komiya E, Utsumi J, Kaneko T, Suga Y, Takamori K. Identification of Keratinocyte Cytoprotectants against Toxicity by the Multikinase Inhibitor Sorafenib Using Drug Repositioning. JID Innov. 2024 Feb 28;4(3):100271. doi: 10.1016/j.xjidi.2024.100271. PMID: 38585194; PMCID: PMC10990978. 7: Dharavath B, Butle A, Chaudhary A, Pal A, Desai S, Chowdhury A, Thorat R, Upadhyay P, Nair S, Dutt A. Recurrent UBE3C-LRP5 translocations in head and neck cancer with therapeutic implications. NPJ Precis Oncol. 2024 Mar 4;8(1):63. doi: 10.1038/s41698-024-00555-4. PMID: 38438481; PMCID: PMC10912599. 8: Zheng W, Chen K, Lv Y, Lao W, Zhu H. Pyrvinium Pamoate Induces Cell Apoptosis and Autophagy in Colorectal Cancer. Anticancer Res. 2024 Mar;44(3):1193-1199. doi: 10.21873/anticanres.16914. PMID: 38423653. 9: Melcón-Fernández E, Galli G, Balaña-Fouce R, García-Fernández N, Martínez- Valladares M, Reguera RM, García-Estrada C, Pérez-Pertejo Y. In Vitro and Ex Vivo Synergistic Effect of Pyrvinium Pamoate Combined with Miltefosine and Paromomycin against Leishmania. Trop Med Infect Dis. 2024 Jan 25;9(2):30. doi: 10.3390/tropicalmed9020030. PMID: 38393119; PMCID: PMC10891607. 10: Ji Y, Zhang W, Shen K, Su R, Liu X, Ma Z, Liu B, Hu C, Xue Y, Xin Z, Yang Y, Li A, Jiang Z, Jing N, Zhu HH, Dong L, Zhu Y, Dong B, Pan J, Wang Q, Xue W. The ELAVL3/MYCN positive feedback loop provides a therapeutic target for neuroendocrine prostate cancer. Nat Commun. 2023 Nov 28;14(1):7794. doi: 10.1038/s41467-023-43676-3. PMID: 38016952; PMCID: PMC10684895. 11: Yang J, Lim JT, Victor P, Chen C, Khwaja H, Schnellmann RG, Roe DJ, Gokhale PC, DeCaprio JA, Padi M. Integrative analysis reveals therapeutic potential of pyrvinium pamoate in Merkel cell carcinoma. bioRxiv [Preprint]. 2023 Nov 4:2023.11.01.565218. doi: 10.1101/2023.11.01.565218. PMID: 37961132; PMCID: PMC10635082. 12: Tse J, O'Keefe R, Rigopolous A, Carli ALE, Waaler J, Krauss S, Ernst M, Buchert M. A Mouse Model for the Rapid and Binomial Assessment of Putative WNT/β-Catenin Signalling Inhibitors. Biomedicines. 2023 Oct 7;11(10):2719. doi: 10.3390/biomedicines11102719. PMID: 37893093; PMCID: PMC10604108. 13: Ponzini FM, Schultz CW, Leiby BE, Cannaday S, Yeo T, Posey J, Bowne WB, Yeo C, Brody JR, Lavu H, Nevler A. Repurposing the FDA-approved anthelmintic pyrvinium pamoate for pancreatic cancer treatment: study protocol for a phase I clinical trial in early-stage pancreatic ductal adenocarcinoma. BMJ Open. 2023 Oct 17;13(10):e073839. doi: 10.1136/bmjopen-2023-073839. PMID: 37848297; PMCID: PMC10582846. 14: Kurmi K, Liang D, van de Ven R, Georgiev P, Gassaway BM, Han S, Notarangelo G, Harris IS, Yao CH, Park JS, Hu SH, Peng J, Drijvers JM, Boswell S, Sokolov A, Dougan SK, Sorger PK, Gygi SP, Sharpe AH, Haigis MC. Metabolic modulation of mitochondrial mass during CD4+ T cell activation. Cell Chem Biol. 2023 Sep 21;30(9):1064-1075.e8. doi: 10.1016/j.chembiol.2023.08.008. PMID: 37716347; PMCID: PMC10604707. 15: Faux MC, Weinstock J, Gogos S, Prato E, Azimpour AI, O'Keefe R, Cathcart- King Y, Garnham AL, Ernst M, Preaudet A, Christie M, Putoczki TL, Buchert M, Burgess AW. Combined Treatment with a WNT Inhibitor and the NSAID Sulindac Reduces Colon Adenoma Burden in Mice with Truncated APC. Cancer Res Commun. 2022 Feb 2;2(2):66-77. doi: 10.1158/2767-9764.CRC-21-0105. PMID: 36860494; PMCID: PMC9973414. 16: Li Y, Li S, Chen M, Xiao J, Fang H. Synergistic effect of pyrvinium pamoate and posaconazole against Cryptococcus neoformans in vitro and in vivo. Front Cell Infect Microbiol. 2022 Dec 9;12:1074903. doi: 10.3389/fcimb.2022.1074903. PMID: 36569209; PMCID: PMC9780465. 17: Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines. 2022 Dec 14;10(12):3249. doi: 10.3390/biomedicines10123249. PMID: 36552005; PMCID: PMC9775650. 18: Kaul G, Karale UB, Akhir A, Shukla M, Saxena D, Rode HB, Chopra S. Pyrvinium pamoate potentiates levofloxacin against levofloxacin-resistant Staphylococcus aureus. Future Microbiol. 2022 Dec;17:1475-1486. doi: 10.2217/fmb-2022-0159. Epub 2022 Oct 31. PMID: 36314364. 19: Simm C, Weerasinghe H, Thomas DR, Harrison PF, Newton HJ, Beilharz TH, Traven A. Disruption of Iron Homeostasis and Mitochondrial Metabolism Are Promising Targets to Inhibit Candida auris. Microbiol Spectr. 2022 Apr 27;10(2):e0010022. doi: 10.1128/spectrum.00100-22. Epub 2022 Apr 12. PMID: 35412372; PMCID: PMC9045333. 20: Decroocq J, Birsen R, Montersino C, Chaskar P, Mano J, Poulain L, Friedrich C, Alary AS, Guermouche H, Sahal A, Fouquet G, Gotanègre M, Simonetta F, Mouche S, Gestraud P, Lescure A, Del Nery E, Bosc C, Grenier A, Mazed F, Mondesir J, Chapuis N, Ho L, Boughalem A, Lelorc'h M, Gobeaux C, Fontenay M, Recher C, Vey N, Guillé A, Birnbaum D, Hermine O, Radford-Weiss I, Tsantoulis P, Collette Y, Castellano R, Sarry JE, Pasmant E, Bouscary D, Kosmider O, Tamburini J. RAS activation induces synthetic lethality of MEK inhibition with mitochondrial oxidative metabolism in acute myeloid leukemia. Leukemia. 2022 May;36(5):1237-1252. doi: 10.1038/s41375-022-01541-0. Epub 2022 Mar 30. PMID: 35354920; PMCID: PMC9061298.