MedKoo Cat#: 328085 | Name: Trans-crocetin sodium
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Trans-crocetin sodium, also known as Transcrocetinate sodium or Sodium crocetinate, is potentially for the treatment of glioblastoma. Trans-crocetin improves amyloid-β degradation in monocytes from Alzheimer's Disease patients. trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Crocetin inhibits invasiveness of MDA-MB-231 breast cancer cells via downregulation of matrix metalloproteinases.

Chemical Structure

Trans-crocetin sodium
Trans-crocetin sodium
CAS#591230-99-8 (sodium 1:2)

Theoretical Analysis

MedKoo Cat#: 328085

Name: Trans-crocetin sodium

CAS#: 591230-99-8 (sodium 1:2)

Chemical Formula: C20H22Na2O4

Exact Mass: 0.0000

Molecular Weight: 372.37

Elemental Analysis: C, 64.51; H, 5.96; Na, 12.35; O, 17.19

Price and Availability

Size Price Availability Quantity
10mg USD 150.00 Ready to ship
25mg USD 250.00 Ready to ship
50mg USD 450.00 Ready to ship
100mg USD 750.00 Ready to ship
200mg USD 1,250.00 Ready to ship
500mg USD 2,850.00 Ready to ship
1g USD 3,950.00 Ready to ship
2g USD 6,650.00 Ready to ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
591230-99-8 (sodium 1:2) 64603-92-5(sodium 1:x) 27876-94-4 (free acid) 189148-59-2 504-39-2 763872-89-5
Synonym
Trans-crocetinate sodium; Trans-crocetin sodium; Transcrocetinate sodium; Sodium crocetinate; Trans-crocetinate sodium; TSC; NSC 407300; Crocetin.
IUPAC/Chemical Name
sodium (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate
InChi Key
RMDMBHQVNHQDDD-VFWKRBOSSA-L
InChi Code
InChI=1S/C20H24O4.2Na/c1-15(11-7-13-17(3)19(21)22)9-5-6-10-16(2)12-8-14-18(4)20(23)24;;/h5-14H,1-4H3,(H,21,22)(H,23,24);;/q;2*+1/p-2/b6-5+,11-7+,12-8+,15-9+,16-10+,17-13+,18-14+;;
SMILES Code
C/C(=C\C=C\C=C(\C=C\C=C(\C(=O)[O-])/C)/C)/C=C/C=C(/C(=O)[O-])\C.[Na+].[Na+]
Appearance
Orange to red solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Related CAS# 591230-99-8 (Trans-crocetinate sodium, 1:2) 27876-94-4 (Trans-crocetin, free acid) 64603-92-5 (Trans-crocetinate sodium, 1:x)
Biological target:
Transcrocetinate disodium, extracted from saffron (Crocus sativus L.), acts as an NMDA receptor antagonist with high affinity.
In vitro activity:
Trans-crocetin was selected for in depth molecular characterization of its potentially protective effects against Alzheimer's Disease (AD), utilizing two AD neuronal cell culture models (SH-SY5Y overexpressing APP and PC12 expressing hyperphosphorylated tau). Biologically relevant concentrations, ranging from 0.1 μM to 1 mM, applied for 24 h or 72 h, were well tolerated by differentiated wild type SH-SY5Y and PC12 cells. Trans-crocetin dramatically reduced BACE1 (by 80%), total PSEN1 (by 17%), PSEN1 (by 65%) and PSEN2 (by 23%), as well as their complexes (by 69 and 50%, respectively), while it increased PSEN1- and PSEN2-CTF (by 83 and 57%, respectively). Meanwhile it significantly increased total APP by 46%, cellular APP by 41%, and APP-C99 by 107% (Figure 4). Additionally, trans-crocetin significantly reduced both total (by 46%) and phosphorylated tau (pThr231 by 19% and pSer199/Ser202 by 68%), as well as GSK3β (by 53%), ERK2 (by 37%), pERK1 (by 35%) and pERK2 (by 32%). Reference: Front Neurosci. 2019 Mar 26;13:249. https://pubmed.ncbi.nlm.nih.gov/30971876/
In vivo activity:
TBD
Solvent mg/mL mM
Solubility
H2O 16.7 44.77
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 372.37 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Lautenschläger M, Sendker J, Hüwel S, Galla HJ, Brandt S, Düfer M, Riehemann K, Hensel A. Intestinal formation of transcrocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine. 2015 Jan 15;22(1):36-44. doi: 10.1016/j.phymed.2014.10.009. Epub 2014 Nov 11. PMID: 25636868. 2. Chalatsa I, Arvanitis DA, Koulakiotis NS, Giagini A, Skaltsounis AL, Papadopoulou-Daifoti Z, Tsarbopoulos A, Sanoudou D. The Crocus sativus Compounds trans-Crocin 4 and trans-Crocetin Modulate the Amyloidogenic Pathway and Tau Misprocessing in Alzheimer Disease Neuronal Cell Culture Models. Front Neurosci. 2019 Mar 26;13:249. doi: 10.3389/fnins.2019.00249. PMID: 30971876; PMCID: PMC6443833.
In vitro protocol:
1. Lautenschläger M, Sendker J, Hüwel S, Galla HJ, Brandt S, Düfer M, Riehemann K, Hensel A. Intestinal formation of transcrocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine. 2015 Jan 15;22(1):36-44. doi: 10.1016/j.phymed.2014.10.009. Epub 2014 Nov 11. PMID: 25636868. 2. Chalatsa I, Arvanitis DA, Koulakiotis NS, Giagini A, Skaltsounis AL, Papadopoulou-Daifoti Z, Tsarbopoulos A, Sanoudou D. The Crocus sativus Compounds trans-Crocin 4 and trans-Crocetin Modulate the Amyloidogenic Pathway and Tau Misprocessing in Alzheimer Disease Neuronal Cell Culture Models. Front Neurosci. 2019 Mar 26;13:249. doi: 10.3389/fnins.2019.00249. PMID: 30971876; PMCID: PMC6443833.
In vivo protocol:
TBD
1: Tiribuzi R, Crispoltoni L, Chiurchiù V, Casella A, Montecchiani C, Del Pino AM, Maccarrone M, Palmerini CA, Caltagirone C, Kawarai T, Orlacchio A, Orlacchio A. Trans-crocetin improves amyloid-β degradation in monocytes from Alzheimer's Disease patients. J Neurol Sci. 2017 Jan 15;372:408-412. doi: 10.1016/j.jns.2016.11.004. PubMed PMID: 27865556. 2: Lautenschläger M, Sendker J, Hüwel S, Galla HJ, Brandt S, Düfer M, Riehemann K, Hensel A. Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine. 2015 Jan 15;22(1):36-44. doi: 10.1016/j.phymed.2014.10.009. PubMed PMID: 25636868. 3: Lautenschläger M, Lechtenberg M, Sendker J, Hensel A. Effective isolation protocol for secondary metabolites from saffron: semi-preparative scale preparation of crocin-1 and trans-crocetin. Fitoterapia. 2014 Jan;92:290-5. doi: 10.1016/j.fitote.2013.11.014. PubMed PMID: 24321578. 4: Berger F, Hensel A, Nieber K. Saffron extract and trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Neuroscience. 2011 Apr 28;180:238-47. doi: 10.1016/j.neuroscience.2011.02.037. PubMed PMID: 21352900. 5: Sánchez AM, Carmona M, Zalacain A, Carot JM, Jabaloyes JM, Alonso GL. Rapid determination of crocetin esters and picrocrocin from saffron spice (Crocus sativus L.) using UV-visible spectrophotometry for quality control. J Agric Food Chem. 2008 May 14;56(9):3167-75. doi: 10.1021/jf703725e. PubMed PMID: 18407652. 6: Inoue K, Tanada C, Nishikawa H, Matsuda S, Tada A, Ito Y, Min JZ, Todoroki K, Sugimoto N, Toyo'oka T, Akiyama H. Evaluation of gardenia yellow using crocetin from alkaline hydrolysis based on ultra high performance liquid chromatography and high-speed countercurrent chromatography. J Sep Sci. 2014 Dec;37(24):3619-24. doi: 10.1002/jssc.201400793. PubMed PMID: 25296622. 7: Valle García-Rodríguez M, Serrano-Díaz J, Tarantilis PA, López-Córcoles H, Carmona M, Alonso GL. Determination of saffron quality by high-performance liquid chromatography. J Agric Food Chem. 2014 Aug 13;62(32):8068-74. doi: 10.1021/jf5019356. PubMed PMID: 25075549. 8: Carmona M, Zalacain A, Pardo JE, López E, Alvarruiz A, Alonso GL. Influence of different drying and aging conditions on saffron constituents. J Agric Food Chem. 2005 May 18;53(10):3974-9. PubMed PMID: 15884826. 9: Maggi L, Carmona M, Zalacain A, Tomé MM, Murcia MA, Alonso GL. Parabens as agents for improving crocetin esters' shelf-life in aqueous saffron extracts. Molecules. 2009 Mar 16;14(3):1160-70. doi: 10.3390/molecules14031160. PubMed PMID: 19325516. 10: Zalacain A, Ordoudi SA, Díaz-Plaza EM, Carmona M, Blázquez I, Tsimidou MZ, Alonso GL. Near-infrared spectroscopy in saffron quality control: determination of chemical composition and geographical origin. J Agric Food Chem. 2005 Nov 30;53(24):9337-41. PubMed PMID: 16302744. 11: Ahrazem O, Rubio-Moraga A, Jimeno ML, Gómez-Gómez L. Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus. Front Plant Sci. 2015 Nov 4;6:971. doi: 10.3389/fpls.2015.00971. PubMed PMID: 26582258; PubMed Central PMCID: PMC4632010. 12: Kyriakoudi A, O'Callaghan YC, Galvin K, Tsimidou MZ, O'Brien NM. Cellular Transport and Bioactivity of a Major Saffron Apocarotenoid, Picrocrocin (4-(β-D-Glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde). J Agric Food Chem. 2015 Oct 7;63(39):8662-8. doi: 10.1021/acs.jafc.5b03363. PubMed PMID: 26340688. 13: Kyriakoudi A, Tsimidou MZ, O'Callaghan YC, Galvin K, O'Brien NM. Changes in total and individual crocetin esters upon in vitro gastrointestinal digestion of saffron aqueous extracts. J Agric Food Chem. 2013 Jun 5;61(22):5318-27. doi: 10.1021/jf400540y. PubMed PMID: 23654200. 14: Chryssanthi DG, Lamari FN, Georgakopoulos CD, Cordopatis P. A new validated SPE-HPLC method for monitoring crocetin in human plasma--application after saffron tea consumption. J Pharm Biomed Anal. 2011 Jun 1;55(3):563-8. doi: 10.1016/j.jpba.2011.02.018. PubMed PMID: 21398065. 15: Tung NH, Shoyama Y. New minor glycoside components from saffron. J Nat Med. 2013 Jul;67(3):672-6. doi: 10.1007/s11418-012-0721-4. PubMed PMID: 23179314. 16: Uekusa Y, Sugimoto N, Sato K, Yun YS, Kunugi A, Yamazaki T, Tanamoto K. Neocrocin A: a novel crocetin glycoside with a unique system for binding sugars isolated from gardenia yellow. Chem Pharm Bull (Tokyo). 2007 Nov;55(11):1643-6. PubMed PMID: 17978528. 17: Dufresne C, Cormier F, Dorion S. In vitro formation of crocetin glucosyl esters by Crocus sativus callus extract. Planta Med. 1997 Apr;63(2):150-3. PubMed PMID: 9140230. 18: Carmona M, Zalacain A, Sánchez AM, Novella JL, Alonso GL. Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem. 2006 Feb 8;54(3):973-9. PubMed PMID: 16448211.