MedKoo Cat#: 318559 | Name: Pranlukast
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Pranlukast is a cysteinyl leukotriene receptor-1 antagonist. It antagonizes or reduces bronchospasm caused, principally in asthmatics, by an allergic reaction to accidentally or inadvertently encountered allergens. They induce bronchoconstriction, increase microvascular permeability, and are vasoconstrictors of coronary arteries. Their biological effects are transduced by a pair of G protein-coupled receptors, CysLT1 and CysLT2.

Chemical Structure

Pranlukast
Pranlukast
CAS#103177-37-3 (free base)

Theoretical Analysis

MedKoo Cat#: 318559

Name: Pranlukast

CAS#: 103177-37-3 (free base)

Chemical Formula: C27H23N5O4

Exact Mass: 481.1750

Molecular Weight: 481.51

Elemental Analysis: C, 67.35; H, 4.81; N, 14.54; O, 13.29

Price and Availability

Size Price Availability Quantity
500mg USD 150.00
1g USD 250.00
2g USD 450.00
5g USD 950.00
100g USD 4,950.00
Bulk Inquiry
Buy Now
Add to Cart
Synonym
Pranlukast; Ono-1078; ONO 1078; ONO-1078; ONO-RS 411; ONO-RS-411; SB 205312;
IUPAC/Chemical Name
N-[4-oxo-2-(2H-tetrazol-5-yl)chromen-8-yl]-4-(4-phenylbutoxy)benzamide
InChi Key
NBQKINXMPLXUET-UHFFFAOYSA-N
InChi Code
InChI=1S/C27H23N5O4/c33-23-17-24(26-29-31-32-30-26)36-25-21(23)10-6-11-22(25)28-27(34)19-12-14-20(15-13-19)35-16-5-4-9-18-7-2-1-3-8-18/h1-3,6-8,10-15,17H,4-5,9,16H2,(H,28,34)(H,29,30,31,32)
SMILES Code
C1=CC=C(C=C1)CCCCOC2=CC=C(C=C2)C(=O)NC3=CC=CC4=C3OC(=CC4=O)C5=NNN=N5
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Pranlukast is a highly potent, selective and competitive antagonist of peptide leukotrienes. Pranlukast inhibits [3H]LTE4, [3H]LTD4, and [3H]LTC4 bindings to lung membranes with Kis of 0.63±0.11, 0.99±0.19, and 5640±680 nM, respectively.
In vitro activity:
Lipopolysaccharide (LPS) significantly increased NF-kappaB activation in NCI-H292 cells, which was inhibited by the pretreatment by pranlukast in a dose-dependent manner. Either LTD(4) or pranlukast alone did not increase NF-kappaB activation in NCI-H292 cells. Pranlukast also inhibited NF-kappaB activation induced by phorbol 12-myristate 13-acetate (PMA). Pranlukast also significantly inhibited LPS-induced MUC2 mRNA expression by reverse transcription-polymerase chain reaction (RT-PCR) analysis in NCI-H292 cells. Pranlukast also inhibited LPS-induced MUC2 gene expression in HM3-MUC2 cells. However, pranlukast did not inhibit MUC5AC gene transcription activity induced by lipoteichoic acid (LTA) in NCI-H292 cells. Reference: Pharmacology. 2005 Feb;73(2):89-96. https://pubmed.ncbi.nlm.nih.gov/15475658/
In vivo activity:
At the end of the experiment, pranlukast significantly reduced lesion volume, and increased neuron densities in the cortex and hippocampal CA1 region in the ischemic hemispheres. Importantly, pranlukast also remarkably reduced the thickness of a scar wall in the ischemic hemispheres. These findings indicate that pranlukast has a long-lasting protective effect on focal cerebral ischemia in mice, and inhibit the ischemia-induced glial scar formation, providing further evidence of the therapeutic potential of pranlukast in the treatment of ischemic stroke. Reference: Brain Res. 2005 Aug 16;1053(1-2):116-25. https://pubmed.ncbi.nlm.nih.gov/16051204/
Solvent mg/mL mM comments
Solubility
DMF 20.0 41.54
DMF:PBS (pH 7.2) (1:8) 5.0 10.38
DMSO 18.1 37.61
Water 0.7 1.39
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 481.51 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y. Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology. 2005 Feb;73(2):89-96. doi: 10.1159/000081294. Epub 2004 Oct 5. PMID: 15475658. 2. Suzuki M, Kato M, Kimura H, Fujiu T, Morikawa A. Inhibition of human eosinophil activation by a cysteinyl leukotriene receptor antagonist (pranlukast; ONO-1078). J Asthma. 2003 Jun;40(4):395-404. doi: 10.1081/jas-120018709. PMID: 12870835. 3. Hur J, Kang JY, Rhee CK, Kim YK, Lee SY. The leukotriene receptor antagonist pranlukast attenuates airway remodeling by suppressing TGF-β signaling. Pulm Pharmacol Ther. 2018 Feb;48:5-14. doi: 10.1016/j.pupt.2017.10.007. Epub 2017 Oct 13. PMID: 29031615. 4. Yu GL, Wei EQ, Wang ML, Zhang WP, Zhang SH, Weng JQ, Chu LS, Fang SH, Zhou Y, Chen Z, Zhang Q, Zhang LH. Pranlukast, a cysteinyl leukotriene receptor-1 antagonist, protects against chronic ischemic brain injury and inhibits the glial scar formation in mice. Brain Res. 2005 Aug 16;1053(1-2):116-25. doi: 10.1016/j.brainres.2005.06.046. PMID: 16051204.
In vitro protocol:
1. Ishinaga H, Takeuchi K, Kishioka C, Suzuki S, Basbaum C, Majima Y. Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology. 2005 Feb;73(2):89-96. doi: 10.1159/000081294. Epub 2004 Oct 5. PMID: 15475658. 2. Suzuki M, Kato M, Kimura H, Fujiu T, Morikawa A. Inhibition of human eosinophil activation by a cysteinyl leukotriene receptor antagonist (pranlukast; ONO-1078). J Asthma. 2003 Jun;40(4):395-404. doi: 10.1081/jas-120018709. PMID: 12870835.
In vivo protocol:
1. Hur J, Kang JY, Rhee CK, Kim YK, Lee SY. The leukotriene receptor antagonist pranlukast attenuates airway remodeling by suppressing TGF-β signaling. Pulm Pharmacol Ther. 2018 Feb;48:5-14. doi: 10.1016/j.pupt.2017.10.007. Epub 2017 Oct 13. PMID: 29031615. 2. Yu GL, Wei EQ, Wang ML, Zhang WP, Zhang SH, Weng JQ, Chu LS, Fang SH, Zhou Y, Chen Z, Zhang Q, Zhang LH. Pranlukast, a cysteinyl leukotriene receptor-1 antagonist, protects against chronic ischemic brain injury and inhibits the glial scar formation in mice. Brain Res. 2005 Aug 16;1053(1-2):116-25. doi: 10.1016/j.brainres.2005.06.046. PMID: 16051204.
1: Wen X, Chen M, Li Z, Liu W, Xu K, Wang J, Zhao X. Site-specific immobilization of Cysteinyl leukotriene receptor 1 through enzymatic DNA-protein conjugation strategy for lead screening. J Chromatogr A. 2024 Jul 19;1727:464948. doi: 10.1016/j.chroma.2024.464948. Epub 2024 Apr 27. PMID: 38759460. 2: Rajmani RS, Surolia A. Antimycobacterial and healing effects of Pranlukast against MTB infection and pathogenesis in a preclinical mouse model of tuberculosis. Front Immunol. 2024 May 2;15:1347045. doi: 10.3389/fimmu.2024.1347045. PMID: 38756781; PMCID: PMC11096513. 3: Yang K, Gao R, Chen H, Hu J, Zhang P, Wei X, Shi J, Chen Y, Zhang L, Chen J, Lyu Y, Dong Z, Wei W, Hu K, Guo Y, Ge J, Sun A. Myocardial reperfusion injury exacerbation due to ALDH2 deficiency is mediated by neutrophil extracellular traps and prevented by leukotriene C4 inhibition. Eur Heart J. 2024 May 13;45(18):1662-1680. doi: 10.1093/eurheartj/ehae205. PMID: 38666340; PMCID: PMC11089336. 4: Sharma V, Sharma A, Wadje BN, Bharate SB. Benzopyrone, a privileged scaffold in drug discovery: An overview of FDA-approved drugs and clinical candidates. Med Res Rev. 2024 Sep;44(5):2035-2077. doi: 10.1002/med.22032. Epub 2024 Mar 26. PMID: 38532246. 5: Kohno T, Kinoshita J, Oyama K, Saito H, Shimada M, Tsuji T, Yamamoto D, Moriyama H, Inaki N, Ohta T. Chemoprevention of esophageal adenocarcinoma in a rat surgical model by a cysteinyl leukotriene receptor‑1 antagonist. Oncol Lett. 2024 Feb 8;27(4):147. doi: 10.3892/ol.2024.14280. PMID: 38385106; PMCID: PMC10879961. 6: Chen X, Li C, Wang Z, Zhou Y, Chu M. Computational screening of biomarkers and potential drugs for arthrofibrosis based on combination of sequencing and large nature language model. J Orthop Translat. 2024 Jan 20;44:102-113. doi: 10.1016/j.jot.2023.11.002. PMID: 38304615; PMCID: PMC10831815. 7: Kim JH, Lee H, Jeong D, Lee JH, Kwon HS, Song WJ, Cho YS, Kim YJ, Shin YW, Kim TB. The Risk of Neuropsychiatric Adverse Events With Use of Leukotriene Receptor Antagonists in Patients With Asthma: Analysis of Korea's National Health Insurance Sharing Service Database. J Allergy Clin Immunol Pract. 2023 Dec;11(12):3690-3699.e7. doi: 10.1016/j.jaip.2023.08.037. Epub 2023 Sep 1. PMID: 37660732. 8: Cheff DM, Cheng Q, Guo H, Travers J, Klumpp-Thomas C, Shen M, Arnér ESJ, Hall MD. Development of an assay pipeline for the discovery of novel small molecule inhibitors of human glutathione peroxidases GPX1 and GPX4. Redox Biol. 2023 Jul;63:102719. doi: 10.1016/j.redox.2023.102719. Epub 2023 May 16. PMID: 37244126; PMCID: PMC10220285. 9: Tang H, Zhu HL, Zhong JX, Wang MN, Xue YP, Zheng YG. Efficient Production of 3-Amino-2-Hydroxy Acetophenone by Multi-Enzyme Biosynthesis. Chembiochem. 2023 Jun 15;24(12):e202300165. doi: 10.1002/cbic.202300165. Epub 2023 May 25. PMID: 37170827. 10: Frątczak A, Polak K, Miziołek B, Bergler-Czop B. Torasemide-induced Vascular Purpura in the Course of Eosinophilic Granulomatosis with Polyangiitis. Acta Dermatovenerol Croat. 2022 Sep;30(2):116-118. PMID: 36254546. 11: Prajapati KJ, Kothari CS. Isolation, Characterization, and Toxicity Study of Stress Degradation Products of Pranlukast Hydrate. Chem Res Toxicol. 2022 Jul 18;35(7):1206-1219. doi: 10.1021/acs.chemrestox.1c00222. Epub 2022 Jun 22. PMID: 35731702. 12: Hassan M, Yasir M, Shahzadi S, Kloczkowski A. Exploration of Potential Ewing Sarcoma Drugs from FDA-Approved Pharmaceuticals through Computational Drug Repositioning, Pharmacogenomics, Molecular Docking, and MD Simulation Studies. ACS Omega. 2022 Jun 1;7(23):19243-19260. doi: 10.1021/acsomega.2c00518. PMID: 35721972; PMCID: PMC9202290. 13: Yu S, Chen X, Li X, Yan J, Jiang Y. Neuroprotective effects of CysLTR antagonist on Streptococcus pneumoniae-induced meningitis in rats. Exp Ther Med. 2022 May 13;24(1):443. doi: 10.3892/etm.2022.11370. PMID: 35720636; PMCID: PMC9185808. 14: Kubota J, Takahashi S, Suzuki T, Ito A, Akiyama N, Takahata N. Pranlukast treatment and the use of respiratory support in infants with respiratory syncytial virus infection. PLoS One. 2022 May 27;17(5):e0269043. doi: 10.1371/journal.pone.0269043. PMID: 35622830; PMCID: PMC9140240. 15: Hatakeyama S, Goto M, Yamamoto A, Ogura J, Watanabe N, Tsutsumi S, Yakuwa N, Yamane R, Nagase S, Takahashi K, Kosaki R, Murashima A, Yamaguchi H. The safety of pranlukast and montelukast during the first trimester of pregnancy: A prospective, two-centered cohort study in Japan. Congenit Anom (Kyoto). 2022 Jul;62(4):161-168. doi: 10.1111/cga.12471. Epub 2022 May 24. PMID: 35538631. 16: Shen Y, Mehrabi Nasab E, Hassanpour F, Athari SS. The Effects of Combined Therapeutic Protocol on Allergic Rhinitis Symptoms and Molecular Determinants. Iran J Allergy Asthma Immunol. 2022 Apr 11;21(2):141-150. doi: 10.18502/ijaai.v21i2.9222. PMID: 35490268. 17: Shin EY, Jin JH, Kang MK, Yoo YS, Lee JH, Song WJ, Kwon HS, Cho YS, Moon HB, Kim TB. Adverse drug reactions of montelukast and pranlukast: Analysis of the Korea database. Asian Pac J Allergy Immunol. 2022 Mar 12. doi: 10.12932/AP-030821-1202. Epub ahead of print. PMID: 35278057. 18: Yelamanchi SD, Arun Kumar ST, Mishra A, Keshava Prasad TS, Surolia A. Metabolite Dysregulation by Pranlukast in Mycobacterium tuberculosis. Molecules. 2022 Feb 24;27(5):1520. doi: 10.3390/molecules27051520. PMID: 35268621; PMCID: PMC8911922. 19: Figueroa EE, Denton JS. A SWELL time to develop the molecular pharmacology of the volume-regulated anion channel (VRAC). Channels (Austin). 2022 Dec;16(1):27-36. doi: 10.1080/19336950.2022.2033511. PMID: 35114895; PMCID: PMC8820792. 20: Fujimori K, Uno S, Kuroda K, Matsumoto C, Maehara T. Leukotriene C4 synthase is a novel PPARγ target gene, and leukotriene C4 and D4 activate adipogenesis through cysteinyl LT1 receptors in adipocytes. Biochim Biophys Acta Mol Cell Res. 2022 Mar;1869(3):119203. doi: 10.1016/j.bbamcr.2021.119203. Epub 2021 Dec 27. PMID: 34968576.