MedKoo Cat#: 314214 | Name: Bedaquiline
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Bedaquiline, also known as TMC207 and R207910, is a diarylquinoline anti-tuberculosis drug, which was discovered by a team led by Koen Andries at Janssen Pharmaceutica. Bedaquiline blocks the proton pump for ATP synthase of mycobacteria. ATP production is required for cellular energy production and its loss leads to cell death, even in dormant or nonreplicating mycobacteria.It is the first member of a new class of drugs called the diarylquinolines. Bedaquiline is bactericidal.

Chemical Structure

Bedaquiline
Bedaquiline
CAS#843663-66-1 (free base)

Theoretical Analysis

MedKoo Cat#: 314214

Name: Bedaquiline

CAS#: 843663-66-1 (free base)

Chemical Formula: C32H31BrN2O2

Exact Mass: 554.1569

Molecular Weight: 555.50

Elemental Analysis: C, 69.19; H, 5.62; Br, 14.38; N, 5.04; O, 5.76

Price and Availability

Size Price Availability Quantity
10mg USD 90.00 Ready to ship
25mg USD 180.00 Ready to ship
50mg USD 285.00 Ready to ship
100mg USD 450.00 Ready to ship
200mg USD 750.00 Ready to ship
500mg USD 1,650.00 Ready to ship
1g USD 2,950.00 Ready to ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Synonym
TMC207; TMC-207; TMC 207; R207910; R-207910; R 207910; Bedaquiline; Bedaquiline fumarate; trade name Sirturo,
IUPAC/Chemical Name
(1R,2S)-1-(6-Bromo-2-methoxy-3-quinolyl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol
InChi Key
QUIJNHUBAXPXFS-XLJNKUFUSA-N
InChi Code
InChI=1S/C32H31BrN2O2/c1-35(2)19-18-32(36,28-15-9-13-22-10-7-8-14-26(22)28)30(23-11-5-4-6-12-23)27-21-24-20-25(33)16-17-29(24)34-31(27)37-3/h4-17,20-21,30,36H,18-19H2,1-3H3/t30-,32-/m1/s1
SMILES Code
O[C@](CCN(C)C)(C1=C2C=CC=CC2=CC=C1)[C@@H](C3=CC4=CC(Br)=CC=C4N=C3OC)C5=CC=CC=C5
Appearance
solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, DMF, EtOH, and 1:3 DMF:PBS
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
When it was approved by the FDA on the 28th December 2012, it was the first new medicine to fight TB in more than forty years, and is specifically approved to treat multi-drug-resistant tuberculosis.
Biological target:
Bedaquiline (TMC207) is a diarylquinoline drug and inhibits Mycobacterium tuberculosis (Mtb) F1FO-ATP synthase through targeting of both the c- and the ε-subunit.
In vitro activity:
The in vitro activity of Bedaquiline (BDQ) against slow-growing mycobacteria (SGM) was evaluated by assessing their minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). The MIC of BDQ against 17 clinical isolates including Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium chimaera, Mycobacterium kansasii and Mycobacterium simiae species was determined by the resazurin microtitre assay and the MBC by the c.f.u. determination on 7H10 agar plates. BDQ has a bacteriostatic activity on all SGM tested with a MIC range from 0.03 to 0.007 µg ml-1 and surprisingly a good bactericidal activity on the majority of the isolates tested with an MBC of 1-2 µg ml-1 . Based on these results BDQ seems to be very promising for treatment of diseases caused by SGM. Reference: J Med Microbiol. 2019 Aug;68(8):1137-1139. https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.001025#tab2
In vivo activity:
The activity of BDQ against M. abscessus was assessed in zebrafish larvae. When infected embryos were exposed for 3 days to the lowest (1 μg/ml) concentration of BDQ tested, a significant increased survival rate was observed compared to the untreated group of embryos (Fig. 2A). Exposure to a higher dose of BDQ (3 μg/ml) further extended the life span of infected zebrafish and protected around 80% of the infected embryos at 13 dpi (Fig. 2A). This indicates that BDQ is very efficient in this zebrafish test system against M. abscessus infection. Virulence of the rough strain of M. abscessus in zebrafish is correlated with the presence of abscesses, particularly in the central nervous system, and extracellular cords, which due to their size prevent the bacilli from being phagocytosed by macrophages. To investigate whether the high survival rates are associated with decreased pathophysiological symptoms upon drug treatment, the percentages of abscesses and cords were determined. Exposure of infected embryos to 3 μg/ml BDQ for either 24, 48, or 72 h was accompanied by a significant decrease in the frequency of abscesses (Fig. 2C) and cords (Fig. 2D). Reference: Antimicrob Agents Chemother. 2017 Oct 24;61(11):e01225-17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655087/
Solvent mg/mL mM
Solubility
DMSO 17.5 31.50
Ethanol 5.1 9.18
DMF 25.0 45.00
DMF:PBS (pH 7.2) (1:3) 0.3 0.45
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 555.50 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Martin A, Godino IT, Aguilar-Ayala DA, Mathys V, Lounis N, Villalobos HR. In vitro activity of bedaquiline against slow-growing nontuberculous mycobacteria. J Med Microbiol. 2019 Aug;68(8):1137-1139. doi: 10.1099/jmm.0.001025. Epub 2019 Jun 18. PMID: 31210631. 2. Aguilar-Ayala DA, Cnockaert M, André E, Andries K, Gonzalez-Y-Merchand JA, Vandamme P, Palomino JC, Martin A. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol. 2017 Aug;66(8):1140-1143. doi: 10.1099/jmm.0.000537. Epub 2017 Jul 28. PMID: 28749330; PMCID: PMC5817190. 3. Hu Y, Pertinez H, Liu Y, Davies G, Coates A. Bedaquiline kills persistent Mycobacterium tuberculosis with no disease relapse: an in vivo model of a potential cure. J Antimicrob Chemother. 2019 Jun 1;74(6):1627-1633. doi: 10.1093/jac/dkz052. PMID: 30789209. 4. Dupont C, Viljoen A, Thomas S, Roquet-Banères F, Herrmann JL, Pethe K, Kremer L. Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish. Antimicrob Agents Chemother. 2017 Oct 24;61(11):e01225-17. doi: 10.1128/AAC.01225-17. PMID: 28807917; PMCID: PMC5655087.
In vitro protocol:
1. Martin A, Godino IT, Aguilar-Ayala DA, Mathys V, Lounis N, Villalobos HR. In vitro activity of bedaquiline against slow-growing nontuberculous mycobacteria. J Med Microbiol. 2019 Aug;68(8):1137-1139. doi: 10.1099/jmm.0.001025. Epub 2019 Jun 18. PMID: 31210631. 2. Aguilar-Ayala DA, Cnockaert M, André E, Andries K, Gonzalez-Y-Merchand JA, Vandamme P, Palomino JC, Martin A. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol. 2017 Aug;66(8):1140-1143. doi: 10.1099/jmm.0.000537. Epub 2017 Jul 28. PMID: 28749330; PMCID: PMC5817190.
In vivo protocol:
1. Hu Y, Pertinez H, Liu Y, Davies G, Coates A. Bedaquiline kills persistent Mycobacterium tuberculosis with no disease relapse: an in vivo model of a potential cure. J Antimicrob Chemother. 2019 Jun 1;74(6):1627-1633. doi: 10.1093/jac/dkz052. PMID: 30789209. 2. Dupont C, Viljoen A, Thomas S, Roquet-Banères F, Herrmann JL, Pethe K, Kremer L. Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish. Antimicrob Agents Chemother. 2017 Oct 24;61(11):e01225-17. doi: 10.1128/AAC.01225-17. PMID: 28807917; PMCID: PMC5655087.
1: Hafkin J, Hittel N, Martin A, Gupta R. Compassionate Use of Delamanid in Combination with Bedaquiline for the Treatment of MDR-TB. Eur Respir J. 2018 Oct 25. pii: 1801154. doi: 10.1183/13993003.01154-2018. [Epub ahead of print] PubMed PMID: 30361253. 2: Ndjeka N, Schnippel K, Master I, Meintjes G, Maartens G, Romero R, Padanilam X, Enwerem M, Chotoo S, Singh N, Hughes J, Variava E, Ferreira H, Te Riele J, Ismail N, Mohr E, Bantubani N, Conradie F. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur Respir J. 2018 Oct 25. pii: 1801528. doi: 10.1183/13993003.01528-2018. [Epub ahead of print] PubMed PMID: 30361246. 3: Lopez B, Siqueira de Oliveira R, Pinhata JMW, Chimara E, Pacheco Ascencio E, Puyén Guerra ZM, Wainmayer I, Simboli N, Del Granado M, Palomino JC, Ritacco V, Martin A. Bedaquiline and linezolid MIC distributions and epidemiological cut-off values for Mycobacterium tuberculosis in the Latin American region. J Antimicrob Chemother. 2018 Oct 25. doi: 10.1093/jac/dky414. [Epub ahead of print] PubMed PMID: 30358851. 4: Fan Q, Ming WK, Yip WY, You JHS. Cost-effectiveness of bedaquiline or delamanid plus background regimen for multidrug-resistant tuberculosis in a high-income intermediate burden city of China. Int J Infect Dis. 2018 Oct 17. pii: S1201-9712(18)34553-3. doi: 10.1016/j.ijid.2018.10.007. [Epub ahead of print] PubMed PMID: 30342251. 5: Richard M, Gutiérrez AV, Viljoen A, Rodriguez-Rincon D, Roquet-Baneres F, Blaise M, Everall I, Parkhill J, Floto RA, Kremer L. Mutations in the MAB_2299c TetR regulator confer cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother. 2018 Oct 15. pii: AAC.01316-18. doi: 10.1128/AAC.01316-18. [Epub ahead of print] PubMed PMID: 30323043. 6: Ismail N, Omar SV, Ismail NA, Peters RPH. Collated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in Mycobacterium tuberculosis. Data Brief. 2018 Sep 24;20:1975-1983. doi: 10.1016/j.dib.2018.09.057. eCollection 2018 Oct. PubMed PMID: 30306102; PubMed Central PMCID: PMC6172430. 7: Chawla K, Martinez E, Kumar A, Shenoy VP, Sintchenko V. Whole-genome sequencing reveals genetic signature of bedaquiline resistance in a clinical isolate of Mycobacterium tuberculosis. J Glob Antimicrob Resist. 2018 Sep 21;15:103-104. doi: 10.1016/j.jgar.2018.09.006. [Epub ahead of print] PubMed PMID: 30248414. 8: Park S, Lee KM, Kim I, Mok J. The use of bedaquiline to treat patients with multidrug-resistant tuberculosis and end-stage renal disease: A case report. Int J Infect Dis. 2018 Nov;76:88-90. doi: 10.1016/j.ijid.2018.09.009. Epub 2018 Sep 19. PubMed PMID: 30244076. 9: Erratum: Delamanid, Bedaquiline, and Linezolid Minimum Inhibitory Concentration Distributions and Resistance-related Gene Mutations in Multidrug-resistant and Extensively Drug-resistant Tuberculosis in Korea. Ann Lab Med. 2019 Jan;39(1):113. doi: 10.3343/alm.2019.39.1.113. PubMed PMID: 30215242; PubMed Central PMCID: PMC6143465. 10: Rawal T, Patel S, Butani S. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur J Pharm Sci. 2018 Nov 1;124:273-287. doi: 10.1016/j.ejps.2018.08.038. Epub 2018 Aug 31. PubMed PMID: 30176365. 11: Zhao Y, Fox T, Manning K, Stewart A, Tiffin N, Khomo N, Leslie J, Boulle A, Mudaly V, Kock Y, Meintjes G, Wasserman S. Improved treatment outcomes with bedaquiline when substituted for second-line injectable agents in multidrug resistant tuberculosis: a retrospective cohort study. Clin Infect Dis. 2018 Aug 24. doi: 10.1093/cid/ciy727. [Epub ahead of print] PubMed PMID: 30165431. 12: Ismail N, Omar SV, Ismail NA, Peters RPH. In vitro approaches for generation of Mycobacterium tuberculosis mutants resistant to bedaquiline, clofazimine or linezolid and identification of associated genetic variants. J Microbiol Methods. 2018 Oct;153:1-9. doi: 10.1016/j.mimet.2018.08.011. Epub 2018 Aug 28. PubMed PMID: 30165087. 13: Borisov SE, D'Ambrosio L, Centis R, Tiberi S, Dheda K, Alffenaar JW, Amale R, Belilowski E, Bruchfeld J, Canneto B, Denholm J, Duarte R, Esmail A, Filippov A, Davies Forsman L, Gaga M, Ganatra S, Igorevna GA, Lazaro Mastrapa B, Manfrin V, Manga S, Maryandyshev A, Massard G, González Montaner P, Mullerpattan J, Palmero DJ, Pontarelli A, Papavasileiou A, Pontali E, Romero Leyet R, Spanevello A, Udwadia ZF, Viggiani P, Visca D, Sotgiu G, Migliori GB. Outcomes of patients with drug-resistant-tuberculosis treated with bedaquiline-containing regimens and undergoing adjunctive surgery. J Infect. 2018 Aug 7. pii: S0163-4453(18)30246-9. doi: 10.1016/j.jinf.2018.08.003. [Epub ahead of print] PubMed PMID: 30096332. 14: Ionescu AM, Mpobela Agnarson A, Kambili C, Metz L, Kfoury J, Wang S, Williams A, Singh V, Thomas A. Bedaquiline- versus injectable-containing drug-resistant tuberculosis regimens: a cost-effectiveness analysis. Expert Rev Pharmacoecon Outcomes Res. 2018 Dec;18(6):677-689. doi: 10.1080/14737167.2018.1507821. Epub 2018 Aug 23. PubMed PMID: 30073886. 15: Martinez E, Hennessy D, Jelfs P, Crighton T, Chen SC, Sintchenko V. Mutations associated with in vitro resistance to bedaquiline in Mycobacterium tuberculosis isolates in Australia. Tuberculosis (Edinb). 2018 Jul;111:31-34. doi: 10.1016/j.tube.2018.04.007. Epub 2018 Apr 25. PubMed PMID: 30029911. 16: Yang JS, Kim KJ, Choi H, Lee SH. Delamanid, Bedaquiline, and Linezolid Minimum Inhibitory Concentration Distributions and Resistance-related Gene Mutations in Multidrug-resistant and Extensively Drug-resistant Tuberculosis in Korea. Ann Lab Med. 2018 Nov;38(6):563-568. doi: 10.3343/alm.2018.38.6.563. Erratum in: Ann Lab Med. 2019 Jan;39(1):113. PubMed PMID: 30027700; PubMed Central PMCID: PMC6056398. 17: Reuter A, Furin J. Bedaquiline use in South Africa reveals a lifesaving policy in action. Lancet Respir Med. 2018 Sep;6(9):653-655. doi: 10.1016/S2213-2600(18)30280-7. Epub 2018 Jul 11. PubMed PMID: 30001995. 18: Schnippel K, Ndjeka N, Maartens G, Meintjes G, Master I, Ismail N, Hughes J, Ferreira H, Padanilam X, Romero R, Te Riele J, Conradie F. Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study. Lancet Respir Med. 2018 Sep;6(9):699-706. doi: 10.1016/S2213-2600(18)30235-2. Epub 2018 Jul 11. PubMed PMID: 30001994. 19: Schnippel K, Firnhaber C, Page-Shipp L, Sinanovic E. Impact of adverse drug reactions on the incremental cost-effectiveness of bedaquiline for drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2018 Aug 1;22(8):918-925. doi: 10.5588/ijtld.17.0869. PubMed PMID: 29991402. 20: Bastard M, Guglielmetti L, Huerga H, Hayrapetyan A, Khachatryan N, Yegiazaryan L, Faqirzai J, Hovhannisyan L, Varaine F, Hewison C. Bedaquiline and Repurposed Drugs for Fluoroquinolone-Resistant Multidrug-Resistant Tuberculosis: How Much Better Are They? Am J Respir Crit Care Med. 2018 Nov 1;198(9):1228-1231. doi: 10.1164/rccm.201801-0019LE. PubMed PMID: 29969054.