MedKoo Cat#: 333121 | Name: Pinoxaden

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Pinoxaden is a selective herbicide primarily used for post-emergent control of grass weeds in cereal crops such as wheat and barley. It belongs to the phenylpyrazoline chemical class and targets specific enzymes critical to plant growth. Pinoxaden targets Acetyl-CoA Carboxylase (ACCase). Pinoxaden inhibits ACCase, an essential enzyme in the fatty acid biosynthesis pathway of grasses. By inhibiting ACCase, Pinoxaden disrupts the production of lipids needed for cell membrane synthesis and growth, ultimately leading to plant death in susceptible grass species. It is highly selective for monocotyledonous plants (grasses) and does not significantly affect broadleaf crops. IC50 (in vitro): Typically in the nanomolar range for grass ACCase enzymes.

Chemical Structure

Pinoxaden
Pinoxaden
CAS#243973-20-8

Theoretical Analysis

MedKoo Cat#: 333121

Name: Pinoxaden

CAS#: 243973-20-8

Chemical Formula: C23H32N2O4

Exact Mass: 400.2362

Molecular Weight: 400.52

Elemental Analysis: C, 68.97; H, 8.05; N, 6.99; O, 15.98

Price and Availability

This product is currently not in stock but may be available through custom synthesis. To ensure cost efficiency, the minimum order quantity is 1 gram. The estimated lead time is 2 to 4 months, with pricing dependent on the complexity of the synthesis (typically high for intricate chemistries). Quotes for quantities below 1 gram will not be provided. To request a quote, please click the button below. Note: If this product becomes available in stock in the future, pricing will be listed accordingly.
Bulk Inquiry
Related CAS #
No Data
Synonym
Pinoxaden; NewAxial;
IUPAC/Chemical Name
8-(2,6-diethyl-4-methylphenyl)-7-oxo-1,2,4,5-tetrahydro-7H-pyrazolo[1,2-d][1,4,5]oxadiazepin-9-yl pivalate
InChi Key
MGOHCFMYLBAPRN-UHFFFAOYSA-N
InChi Code
InChI=1S/C23H32N2O4/c1-7-16-13-15(3)14-17(8-2)18(16)19-20(26)24-9-11-28-12-10-25(24)21(19)29-22(27)23(4,5)6/h13-14H,7-12H2,1-6H3
SMILES Code
CC(C)(C)C(OC(N1CCOCCN12)=C(C3=C(CC)C=C(C)C=C3CC)C2=O)=O
Appearance
To be determined
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 -4 C for short term (days to weeks) or -20 C for long term(months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 400.52 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Bhattacharya S, Sen MK, Hamouzová K, Košnarová P, Bharati R, Menendez J, Soukup J. Pyroxsulam Resistance in Apera spica-venti: An Emerging Challenge in Crop Protection. Plants (Basel). 2024 Dec 29;14(1):74. doi: 10.3390/plants14010074. PMID: 39795334; PMCID: PMC11722645. 2: Li J, Zhu Y, Sun L, Xu H, Su W, Xue F, Lu C, Tang W, Wu R. The Mitigating Effects of Perilla Leaf Essential Oil on the Phytotoxicity of Fenoxaprop-P-Ethyl in Rice Seedlings. Plants (Basel). 2024 Oct 21;13(20):2946. doi: 10.3390/plants13202946. PMID: 39458893; PMCID: PMC11510985. 3: Rashkivska I, Kolianchuk Y, Prodanchuk M, Nedopytanska N, Bubalo N, Mach M. An oral developmental toxicity study of generic pesticide pinoxaden in rabbits. Toxicol Rep. 2024 Sep 24;13:101747. doi: 10.1016/j.toxrep.2024.101747. PMID: 39386888; PMCID: PMC11462063. 4: Depetris MB, Muñiz Padilla E, Ayala F, Tuesca D, Breccia G. Resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides in Lolium multiflorum Lam. populations of Argentina. Pest Manag Sci. 2024 Dec;80(12):6600-6606. doi: 10.1002/ps.8399. Epub 2024 Sep 2. PMID: 39221960. 5: Jiang M, Wang X, Hu W, Wang Z, Guan H, Zhao N, Liao M, Cao H. A novel mutation Trp-2027-Gly in acetyl-CoA carboxylase confers resistance to cyhalofop- butyl in Chinese sprangletop (Leptochloa chinensis). Pest Manag Sci. 2024 Dec;80(12):6243-6250. doi: 10.1002/ps.8353. Epub 2024 Aug 6. PMID: 39105535. 6: González-Torralva F, Norsworthy JK. Target-site mutations Ile1781Leu and Ile2041Asn in the ACCase2 gene confer resistance to fluazifop-p-butyl and pinoxaden herbicides in a johnsongrass accession from Arkansas, USA. Plant Direct. 2024 Mar 21;8(3):e576. doi: 10.1002/pld3.576. PMID: 38516339; PMCID: PMC10955616. 7: Han Y, Sun Y, Ma H, Wang R, Lan Y, Gao H, Huang Z. Target-site and non- target-site based resistance to clodinafop-propargyl in wild oats (Avena fatua L.). Pestic Biochem Physiol. 2023 Dec;197:105650. doi: 10.1016/j.pestbp.2023.105650. Epub 2023 Oct 15. PMID: 38072525. 8: Ferreira LAI, de Oliveira RS Jr, Constantin J, Brunharo C. Evolution of ACCase-inhibitor resistance in Chloris virgata is conferred by a Trp2027Cys mutation in the herbicide target site. Pest Manag Sci. 2023 Dec;79(12):5220-5229. doi: 10.1002/ps.7723. Epub 2023 Oct 5. PMID: 37592752. 9: Yang Q, Zhu J, Yang X, Wei T, Lv M, Li Y. Ile-1781-Leu Target Mutation and Non-Target-Site Mechanism Confer Resistance to Acetyl-CoA Carboxylase-Inhibiting Herbicides in Digitaria ciliaris var. chrysoblephara. J Agric Food Chem. 2023 May 31;71(21):7988-7995. doi: 10.1021/acs.jafc.3c00646. Epub 2023 May 16. PMID: 37191622. 10: Panozzo S, Farinati S, Sattin M, Scarabel L. Can allele-specific loop- mediated isothermal amplification be used for rapid detection of target-site herbicide resistance in Lolium spp.? Plant Methods. 2023 Feb 7;19(1):14. doi: 10.1186/s13007-023-00989-0. PMID: 36750938; PMCID: PMC9906911. 11: Sondhia S, Pawar DV, Dasari S. Degradation dynamics, correlations, and residues of carfentrazone-ethyl, fenoxaprop-p-ethyl, and pinoxaden under the continuous application in the wheat field. Environ Geochem Health. 2023 Dec;45(12):8851-8865. doi: 10.1007/s10653-023-01487-x. Epub 2023 Jan 26. PMID: 36700995. 12: Wrzesińska-Krupa B, Szmatoła T, Praczyk T, Obrępalska-Stęplowska A. Transcriptome analysis indicates the involvement of herbicide-responsive and plant-pathogen interaction pathways in the development of resistance to ACCase inhibitors in Apera spica-venti. Pest Manag Sci. 2023 May;79(5):1944-1962. doi: 10.1002/ps.7370. Epub 2023 Feb 21. PMID: 36655853. 13: Lan Y, Sun Y, Liu Z, Wei S, Huang H, Cao Y, Li W, Huang Z. Mechanism of Resistance to Pyroxsulam in Multiple-Resistant Alopecurus myosuroides from China. Plants (Basel). 2022 Jun 22;11(13):1645. doi: 10.3390/plants11131645. PMID: 35807597; PMCID: PMC9268964. 14: Ghanizadeh H, Buddenhagen CE, Harrington KC, Griffiths AG, Ngow Z. Pinoxaden resistance in Lolium perenne L. is due to both target-site and non-target-site mechanisms. Pestic Biochem Physiol. 2022 Jun;184:105103. doi: 10.1016/j.pestbp.2022.105103. Epub 2022 Apr 20. PMID: 35715042. 15: Tyagi S, McKillican BP, Salvador TK, Gichinga MG, Eberle WJ, Viner R, Makaravage KJ, Johnson TS, Russell CA, Roy S. Bioinspired Synthesis of Pinoxaden Metabolites Using a Site-Selective C-H Oxidation Strategy. J Org Chem. 2022 May 6;87(9):6202-6211. doi: 10.1021/acs.joc.2c00440. Epub 2022 Apr 20. PMID: 35442682. 16: Chan DHH, Deane OJ, Kynaston EL, Lindsay C, Taylor P, Armes SP. Sterically Stabilized Diblock Copolymer Nanoparticles Enable Convenient Preparation of Suspension Concentrates Comprising Various Agrochemical Actives. Langmuir. 2022 Mar 8;38(9):2885-2894. doi: 10.1021/acs.langmuir.1c03275. Epub 2022 Feb 22. PMID: 35192370; PMCID: PMC9007534. 17: Chauhan BS. The world's first glyphosate-resistant case of Avena fatua L. and Avena sterilis ssp. ludoviciana (Durieu) Gillet & Magne and alternative herbicide options for their control. PLoS One. 2022 Jan 12;17(1):e0262494. doi: 10.1371/journal.pone.0262494. PMID: 35020774; PMCID: PMC8754340. 18: Li N, Han D, Ma X, Qiu C, Qin Y, Yao T, Wang S, She Y, Hacımüftüoğlu F, Abd El-Aty AM. Simultaneous determination of pinoxaden, cloquintocet-mexyl, clodinafop-propargyl ester and its major metabolite in barley products and soil using QuEChERS modified with multi-walled carbon nanotubes coupled with LC- MS/MS. Biomed Chromatogr. 2022 May;36(5):e5303. doi: 10.1002/bmc.5303. Epub 2022 Feb 6. PMID: 34957590. 19: Kaundun SS, Downes J, Jackson LV, Hutchings SJ, Mcindoe E. Impact of a Novel W2027L Mutation and Non-Target Site Resistance on Acetyl-CoA Carboxylase- Inhibiting Herbicides in a French Lolium multiflorum Population. Genes (Basel). 2021 Nov 21;12(11):1838. doi: 10.3390/genes12111838. PMID: 34828444; PMCID: PMC8620607. 20: El-Sobki AE, Saad AM, El-Saadony MT, El-Tahan AM, Taha AE, Aljuaid BS, El- Shehawi AM, Salem REME. Fluctuation in amino acids content in Triticum aestivum L. cultivars as an indicator on the impact of post-emergence herbicides in controlling weeds. Saudi J Biol Sci. 2021 Nov;28(11):6332-6338. doi: 10.1016/j.sjbs.2021.06.097. Epub 2021 Jul 6. PMID: 34759752; PMCID: PMC8568721.