1: Wakabayashi T, Ueno K, Sugimoto Y. Structure Elucidation and Biosynthesis of Orobanchol. Front Plant Sci. 2022 Feb 9;13:835160. doi: 10.3389/fpls.2022.835160. PMID: 35222492; PMCID: PMC8863659.
2: Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci Adv. 2019 Dec 18;5(12):eaax9067. doi: 10.1126/sciadv.aax9067. PMID: 32064317; PMCID: PMC6989309.
3: Wang Y, Durairaj J, Suárez Duran HG, van Velzen R, Flokova K, Liao CY, Chojnacka A, MacFarlane S, Schranz ME, Medema MH, van Dijk ADJ, Dong L, Bouwmeester HJ. The tomato cytochrome P450 CYP712G1 catalyses the double oxidation of orobanchol en route to the rhizosphere signalling strigolactone, solanacol. New Phytol. 2022 Sep;235(5):1884-1899. doi: 10.1111/nph.18272. Epub 2022 Jun 18. PMID: 35612785; PMCID: PMC9542622.
4: Tokunaga T, Hayashi H, Akiyama K. Medicaol, a strigolactone identified as a putative didehydro-orobanchol isomer, from Medicago truncatula. Phytochemistry. 2015 Mar;111:91-7. doi: 10.1016/j.phytochem.2014.12.024. Epub 2015 Jan 12. PMID: 25593009.
5: Changenet V, Macadré C, Boutet-Mercey S, Magne K, Januario M, Dalmais M, Bendahmane A, Mouille G, Dufresne M. Overexpression of a Cytochrome P450 Monooxygenase Involved in Orobanchol Biosynthesis Increases Susceptibility to Fusarium Head Blight. Front Plant Sci. 2021 Apr 1;12:662025. doi: 10.3389/fpls.2021.662025. PMID: 33868356; PMCID: PMC8048717.
6: Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K. 2'-epi- orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem. 2007 Oct 3;55(20):8067-72. doi: 10.1021/jf0715121. Epub 2007 Sep 6. PMID: 17803261.
7: Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y. Ent-2'-epi- Orobanchol and its acetate, as germination stimulants for Striga gesnerioides seeds isolated from cowpea and red clover. J Agric Food Chem. 2011 Oct 12;59(19):10485-90. doi: 10.1021/jf2024193. Epub 2011 Sep 19. PMID: 21899364.
8: Flematti GR, Scaffidi A, Waters MT, Smith SM. Stereospecificity in strigolactone biosynthesis and perception. Planta. 2016 Jun;243(6):1361-73. doi: 10.1007/s00425-016-2523-5. Epub 2016 Apr 22. PMID: 27105887.
9: Homma M, Uchida K, Wakabayashi T, Mizutani M, Takikawa H, Sugimoto Y. 2-oxoglutarate-dependent dioxygenases and BAHD acyltransferases drive the structural diversification of orobanchol in Fabaceae plants. Front Plant Sci. 2024 Apr 18;15:1392212. doi: 10.3389/fpls.2024.1392212. PMID: 38699535; PMCID: PMC11063326.
10: Malik H, Kohlen W, Jamil M, Rutjes FP, Zwanenburg B. Aromatic A-ring analogues of orobanchol, new germination stimulants for seeds of parasitic weeds. Org Biomol Chem. 2011 Apr 7;9(7):2286-93. doi: 10.1039/c0ob00735h. Epub 2011 Feb 14. PMID: 21321762.
11: Wakabayashi T, Moriyama D, Miyamoto A, Okamura H, Shiotani N, Shimizu N, Mizutani M, Takikawa H, Sugimoto Y. Identification of novel canonical strigolactones produced by tomato. Front Plant Sci. 2022 Dec 14;13:1064378. doi: 10.3389/fpls.2022.1064378. Erratum in: Front Plant Sci. 2023 Feb 13;14:1151993. doi: 10.3389/fpls.2023.1151993. PMID: 36589093; PMCID: PMC9794758.
12: Zwanenburg B, Ćavar Zeljković S, Pospíšil T. Synthesis of strigolactones, a strategic account. Pest Manag Sci. 2016 Jan;72(1):15-29. doi: 10.1002/ps.4105. Epub 2015 Oct 7. Erratum in: Pest Manag Sci. 2016 Mar;72(3):637. doi: 10.1002/ps.4229. PMID: 26304779.
13: Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta. 2007 Mar;225(4):1031-8. doi: 10.1007/s00425-006-0410-1. PMID: 17260144.
14: Homma M, Wakabayashi T, Moriwaki Y, Shiotani N, Shigeta T, Isobe K, Okazawa A, Ohta D, Terada T, Shimizu K, Mizutani M, Takikawa H, Sugimoto Y. Insights into stereoselective ring formation in canonical strigolactone: Identification of a dirigent domain-containing enzyme catalyzing orobanchol synthesis. Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2313683121. doi: 10.1073/pnas.2313683121. Epub 2024 Jun 21. PMID: 38905237; PMCID: PMC11214005.
15: Wu S, Ma X, Zhou A, Valenzuela A, Zhou K, Li Y. Establishment of strigolactone-producing bacterium-yeast consortium. Sci Adv. 2021 Sep 17;7(38):eabh4048. doi: 10.1126/sciadv.abh4048. Epub 2021 Sep 17. PMID: 34533983; PMCID: PMC8448452.
16: Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant. 2013 Jan;6(1):153-63. doi: 10.1093/mp/sss139. Epub 2012 Nov 30. PMID: 23204500; PMCID: PMC3548624.
17: Chen GE, Wang JY, Votta C, Braguy J, Jamil M, Kirschner GK, Fiorilli V, Berqdar L, Balakrishna A, Blilou I, Lanfranco L, Al-Babili S. Disruption of the rice 4-DEOXYOROBANCHOL HYDROXYLASE unravels specific functions of canonical strigolactones. Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2306263120. doi: 10.1073/pnas.2306263120. Epub 2023 Oct 11. PMID: 37819983; PMCID: PMC10589652.
18: Yoneyama K, Xie X, Yoneyama K, Takeuchi Y. Strigolactones: structures and biological activities. Pest Manag Sci. 2009 May;65(5):467-70. doi: 10.1002/ps.1726. PMID: 19222028.
19: Zhang Y, Cheng X, Wang Y, Díez-Simón C, Flokova K, Bimbo A, Bouwmeester HJ, Ruyter-Spira C. The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytol. 2018 Jul;219(1):297-309. doi: 10.1111/nph.15131. Epub 2018 Apr 14. PMID: 29655242.
20: Zwanenburg B, Blanco-Ania D. Strigolactones: new plant hormones in the spotlight. J Exp Bot. 2018 Apr 23;69(9):2205-2218. doi: 10.1093/jxb/erx487. PMID: 29385517.