Synonym
Broccoli sprout extracts; 4-methyl-sulfinybutyl isothiocyanatel; Sulforafan; Sulforaphane; BroccoPhane; Detoxophane; Sulphoraphane;
IUPAC/Chemical Name
1-isothiocyanato-4-(methylsulfinyl)butane
InChi Key
SUVMJBTUFCVSAD-UHFFFAOYSA-N
InChi Code
InChI=1S/C6H11NOS2/c1-10(8)5-3-2-4-7-6-9/h2-5H2,1H3
SMILES Code
O=S(CCCCN=C=S)C
Appearance
Colorless to yellow-brown oil
Purity
>95% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO, not in water
Shelf Life
>5 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Sulforaphane exhibits anticancer, antidiabetic, and antimicrobial properties in experimental models. It is obtained from cruciferous vegetables such as broccoli, Brussels sprouts or cabbages. The enzyme myrosinase transforms glucoraphanin, a glucosinolate, into sulforaphane upon damage to the plant (such as from chewing). Young sprouts of broccoli and cauliflower are particularly rich in glucoraphanin. [source: http://en.wikipedia.org/wiki/Sulforaphane]
Biological target:
Sulforaphane is an inducer of Nrf2 and is also an inhibitor of histone deacetylase (HDAC) and NF-κB.
In vitro activity:
Sulforaphane treatment reduced doxorubicin-induced cardiotoxicity in H9c2 rat myoblasts by decreasing apoptotic cell numbers and pro-apoptotic protein expression, while increasing mitochondrial membrane potential and heme oxygenase-1 (HO-1) expression. This was mediated through the activation of the Keap1/Nrf2/ARE pathway, leading to reduced reactive oxygen species (ROS) levels. Sulforaphane protected against oxidative stress and cell death in H9c2 cells by inducing HO-1 expression.
Reference: Int J Mol Med. 2015 Jul;36(1):53-64. https://pubmed.ncbi.nlm.nih.gov/25936432/
In vivo activity:
Sulforaphane reduced bladder cancer in a murine model. It mitigated histological changes, decreased submucosal capillaries, and normalized gut microbiota dysbiosis by increasing Bacteroides fragilis and Clostridium cluster I. Sulforaphane elevated butyric acid levels in the colon, repaired mucosal epithelium injury, upregulated tight junction proteins and GLP2 expression, and reduced cytokine (IL-6) release and secretory immunoglobulin A levels in bladder cancer-afflicted mice.
Reference: Mol Nutr Food Res. 2018 Dec;62(24):e1800427. https://pubmed.ncbi.nlm.nih.gov/25936432/
|
Solvent |
mg/mL |
mM |
Solubility |
DMF |
3.0 |
16.29 |
DMSO |
16.0 |
90.25 |
Ethanol |
20.0 |
112.81 |
PBS (pH 7.2) |
10.0 |
56.40 |
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.
Preparing Stock Solutions
The following data is based on the
product
molecular weight
177.29
Batch specific molecular weights may vary
from batch to batch
due to the degree of hydration, which will
affect the solvent
volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass |
1 mg |
5 mg |
10 mg |
1 mM |
1.15 mL |
5.76 mL |
11.51 mL |
5 mM |
0.23 mL |
1.15 mL |
2.3 mL |
10 mM |
0.12 mL |
0.58 mL |
1.15 mL |
50 mM |
0.02 mL |
0.12 mL |
0.23 mL |
Formulation protocol:
1. Xie H, Rutz J, Maxeiner S, Grein T, Thomas A, Juengel E, Chun FK, Cinatl J, Haferkamp A, Tsaur I, Blaheta RA. Sulforaphane Inhibits Adhesion and Migration of Cisplatin- and Gemcitabine-Resistant Bladder Cancer Cells In Vitro. Nutrients. 2024 Feb 23;16(5):623. doi: 10.3390/nu16050623. PMID: 38474751; PMCID: PMC10934724.
2. Li B, Kim DS, Yadav RK, Kim HR, Chae HJ. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med. 2015 Jul;36(1):53-64. doi: 10.3892/ijmm.2015.2199. Epub 2015 Apr 28. PMID: 25936432; PMCID: PMC4494600.
3. Luo J, Alkhalidy H, Jia Z, Liu D. Sulforaphane Ameliorates High-Fat-Diet-Induced Metabolic Abnormalities in Young and Middle-Aged Obese Male Mice. Foods. 2024 Mar 29;13(7):1055. doi: 10.3390/foods13071055. PMID: 38611359; PMCID: PMC11012181.
4. He C, Huang L, Lei P, Liu X, Li B, Shan Y. Sulforaphane Normalizes Intestinal Flora and Enhances Gut Barrier in Mice with BBN-Induced Bladder Cancer. Mol Nutr Food Res. 2018 Dec;62(24):e1800427. doi: 10.1002/mnfr.201800427. Epub 2018 Nov 22. PMID: 30302904.
In vitro protocol:
1. Xie H, Rutz J, Maxeiner S, Grein T, Thomas A, Juengel E, Chun FK, Cinatl J, Haferkamp A, Tsaur I, Blaheta RA. Sulforaphane Inhibits Adhesion and Migration of Cisplatin- and Gemcitabine-Resistant Bladder Cancer Cells In Vitro. Nutrients. 2024 Feb 23;16(5):623. doi: 10.3390/nu16050623. PMID: 38474751; PMCID: PMC10934724.
2. Li B, Kim DS, Yadav RK, Kim HR, Chae HJ. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med. 2015 Jul;36(1):53-64. doi: 10.3892/ijmm.2015.2199. Epub 2015 Apr 28. PMID: 25936432; PMCID: PMC4494600.
In vivo protocol:
1. Luo J, Alkhalidy H, Jia Z, Liu D. Sulforaphane Ameliorates High-Fat-Diet-Induced Metabolic Abnormalities in Young and Middle-Aged Obese Male Mice. Foods. 2024 Mar 29;13(7):1055. doi: 10.3390/foods13071055. PMID: 38611359; PMCID: PMC11012181.
2. He C, Huang L, Lei P, Liu X, Li B, Shan Y. Sulforaphane Normalizes Intestinal Flora and Enhances Gut Barrier in Mice with BBN-Induced Bladder Cancer. Mol Nutr Food Res. 2018 Dec;62(24):e1800427. doi: 10.1002/mnfr.201800427. Epub 2018 Nov 22. PMID: 30302904.
1: Sharma R, Sharma A, Chaudhary P, Sahu M, Jaiswal S, Awasthi S, Awasthi YC. Role of 4-hydroxynonenal in chemopreventive activities of sulforaphane. Free Radic Biol Med. 2012 Jun 1-15;52(11-12):2177-85. doi: 10.1016/j.freeradbiomed.2012.04.012. Epub 2012 Apr 23. Review. PubMed PMID: 22579574; PubMed Central PMCID: PMC3377772.
2: Liang H, Yuan Q. Natural sulforaphane as a functional chemopreventive agent: including a review of isolation, purification and analysis methods. Crit Rev Biotechnol. 2012 Sep;32(3):218-34. doi: 10.3109/07388551.2011.604838. Epub 2011 Sep 27. Review. PubMed PMID: 21942647.
3: Keum YS. Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications. Ann N Y Acad Sci. 2011 Jul;1229:184-9. doi: 10.1111/j.1749-6632.2011.06092.x. Review. PubMed PMID: 21793854.
4: Kaminski BM, Steinhilber D, Stein JM, Ulrich S. Phytochemicals resveratrol and sulforaphane as potential agents for enhancing the anti-tumor activities of conventional cancer therapies. Curr Pharm Biotechnol. 2012 Jan;13(1):137-46. Review. PubMed PMID: 21466425.
5: Tomczyk J, Olejnik A. [Sulforaphane--a possible agent in prevention and therapy of cancer]. Postepy Hig Med Dosw (Online). 2010 Nov 29;64:590-603. Review. Polish. PubMed PMID: 21160094.
6: Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012 Jul;64(5):503-8. doi: 10.1016/j.etp.2010.11.005. Epub 2010 Dec 3. Review. PubMed PMID: 21129940.
7: Cheung KL, Kong AN. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J. 2010 Mar;12(1):87-97. doi: 10.1208/s12248-009-9162-8. Epub 2009 Dec 15. Review. PubMed PMID: 20013083; PubMed Central PMCID: PMC2811646.
8: Nian H, Delage B, Ho E, Dashwood RH. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen. 2009 Apr;50(3):213-21. doi: 10.1002/em.20454. Review. PubMed PMID: 19197985; PubMed Central PMCID: PMC2701665.
9: Fimognari C, Lenzi M, Hrelia P. Interaction of the isothiocyanate sulforaphane with drug disposition and metabolism: pharmacological and toxicological implications. Curr Drug Metab. 2008 Sep;9(7):668-78. Review. PubMed PMID: 18781917.
10: Dashwood RH, Ho E. Dietary agents as histone deacetylase inhibitors: sulforaphane and structurally related isothiocyanates. Nutr Rev. 2008 Aug;66 Suppl 1:S36-8. doi: 10.1111/j.1753-4887.2008.00065.x. Review. PubMed PMID: 18673487; PubMed Central PMCID: PMC2656672.
11: Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008 Oct 8;269(2):291-304. doi: 10.1016/j.canlet.2008.04.018. Epub 2008 May 27. Review. PubMed PMID: 18504070; PubMed Central PMCID: PMC2579766.
12: Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin. 2007 Sep;28(9):1343-54. Review. PubMed PMID: 17723168.
13: Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 2007 May;64(9):1105-27. Review. PubMed PMID: 17396224.
14: Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Mutat Res. 2007 May-Jun;635(2-3):90-104. Epub 2006 Nov 28. Review. PubMed PMID: 17134937.
15: Brigelius-Flohé R, Banning A. Part of the series: from dietary antioxidants to regulators in cellular signaling and gene regulation. Sulforaphane and selenium, partners in adaptive response and prevention of cancer. Free Radic Res. 2006 Aug;40(8):775-87. Review. PubMed PMID: 17015256.
16: Myzak MC, Dashwood RH. Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr Drug Targets. 2006 Apr;7(4):443-52. Review. PubMed PMID: 16611031.
17: Gamet-Payrastre L. Signaling pathways and intracellular targets of sulforaphane mediating cell cycle arrest and apoptosis. Curr Cancer Drug Targets. 2006 Mar;6(2):135-45. Review. PubMed PMID: 16529543.
18: Myzak MC, Dashwood RH. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett. 2006 Feb 28;233(2):208-18. Review. PubMed PMID: 16520150; PubMed Central PMCID: PMC2276573.
19: Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto JM. Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett. 2006 May 8;236(1):72-9. Epub 2005 Jul 1. Review. PubMed PMID: 15993536.
20: Fahey JW, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol. 1999 Sep-Oct;37(9-10):973-9. Review. PubMed PMID: 10541453.