Synonym
nadic methyl anhydride; methendic anhydride; XMNA; NMA;
IUPAC/Chemical Name
4-methyl-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione
InChi Key
KNRCVAANTQNTPT-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H10O3/c1-10-3-2-5(4-10)6-7(10)9(12)13-8(6)11/h2-3,5-7H,4H2,1H3
SMILES Code
CC12CC(C3C2C(OC3=O)=O)C=C1
Appearance
Liquid (mixture of isomers)
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>2 years if stored properly
Drug Formulation
To be determined
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
Biological target:
Methyl nadic anhydride has been used as a curing agent in polymer film production.
In vitro activity:
In this work, the curing mechanism of 2,5-bis[(oxiran-2-ylmethoxy)methyl]furan (BOMF) with methyl nadic anhydride (MNA) in the presence of 2-methylimidazole as a catalyst is analyzed. The global activation energy for the curing process of BOMF/MNA resins is in the range 72-79 kJ/mol, depending on both the model used and the sample composition; higher values are experienced by the system with balanced stoichiometry.
Reference: Polymers (Basel). 2022 Dec 5;14(23):5322. https://pubmed.ncbi.nlm.nih.gov/36501714/
Preparing Stock Solutions
The following data is based on the
product
molecular weight
178.19
Batch specific molecular weights may vary
from batch to batch
due to the degree of hydration, which will
affect the solvent
volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass |
1 mg |
5 mg |
10 mg |
1 mM |
1.15 mL |
5.76 mL |
11.51 mL |
5 mM |
0.23 mL |
1.15 mL |
2.3 mL |
10 mM |
0.12 mL |
0.58 mL |
1.15 mL |
50 mM |
0.02 mL |
0.12 mL |
0.23 mL |
Formulation protocol:
1. Marotta A, Faggio N, Brondi C. Curing Kinetics of Bioderived Furan-Based Epoxy Resins: Study on the Effect of the Epoxy Monomer/Hardener Ratio. Polymers (Basel). 2022 Dec 5;14(23):5322. doi: 10.3390/polym14235322. PMID: 36501714; PMCID: PMC9740668.
2. Bifulco A, Marotta A, Passaro J, Costantini A, Cerruti P, Gentile G, Ambrogi V, Malucelli G, Branda F. Thermal and Fire Behavior of a Bio-Based Epoxy/Silica Hybrid Cured with Methyl Nadic Anhydride. Polymers (Basel). 2020 Jul 26;12(8):1661. doi: 10.3390/polym12081661. PMID: 32722585; PMCID: PMC7466172.
In vitro protocol:
1. Marotta A, Faggio N, Brondi C. Curing Kinetics of Bioderived Furan-Based Epoxy Resins: Study on the Effect of the Epoxy Monomer/Hardener Ratio. Polymers (Basel). 2022 Dec 5;14(23):5322. doi: 10.3390/polym14235322. PMID: 36501714; PMCID: PMC9740668.
2. Bifulco A, Marotta A, Passaro J, Costantini A, Cerruti P, Gentile G, Ambrogi V, Malucelli G, Branda F. Thermal and Fire Behavior of a Bio-Based Epoxy/Silica Hybrid Cured with Methyl Nadic Anhydride. Polymers (Basel). 2020 Jul 26;12(8):1661. doi: 10.3390/polym12081661. PMID: 32722585; PMCID: PMC7466172.
1: Bifulco A, Marotta A, Passaro J, Costantini A, Cerruti P, Gentile G, Ambrogi V, Malucelli G, Branda F. Thermal and Fire Behavior of a Bio-Based Epoxy/Silica Hybrid Cured with Methyl Nadic Anhydride. Polymers (Basel). 2020 Jul 26;12(8):1661. doi: 10.3390/polym12081661. PMID: 32722585; PMCID: PMC7466172.
2: Marotta A, Faggio N, Ambrogi V, Cerruti P, Gentile G, Mija A. Curing Behavior and Properties of Sustainable Furan-Based Epoxy/Anhydride Resins. Biomacromolecules. 2019 Oct 14;20(10):3831-3841. doi: 10.1021/acs.biomac.9b00919. Epub 2019 Sep 3. PMID: 31412201.
3: Fu K, Xie Q, Lü F, Duan Q, Wang X, Zhu Q, Huang Z. Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents. Polymers (Basel). 2019 Jun 3;11(6):975. doi: 10.3390/polym11060975. PMID: 31163650; PMCID: PMC6630713.
4: Fombuena V, Petrucci R, Dominici F, Jordá-Vilaplana A, Montanes N, Torre L. Maleinized Linseed Oil as Epoxy Resin Hardener for Composites with High Bio Content Obtained from Linen Byproducts. Polymers (Basel). 2019 Feb 11;11(2):301. doi: 10.3390/polym11020301. PMID: 30960285; PMCID: PMC6419190.
5: Kristufek SL, Yang G, Link LA, Rohde BJ, Robertson ML, Wooley KL. Synthesis, Characterization, and Cross-Linking Strategy of a Quercetin-Based Epoxidized Monomer as a Naturally-Derived Replacement for BPA in Epoxy Resins. ChemSusChem. 2016 Aug 23;9(16):2135-42. doi: 10.1002/cssc.201600392. Epub 2016 Jul 14. PMID: 27415143.
6: Huang K, Liu Z, Zhang J, Li S, Li M, Xia J, Zhou Y. Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways. Biomacromolecules. 2014 Mar 10;15(3):837-43. doi: 10.1021/bm4018929. Epub 2014 Feb 6. PMID: 24484324.
7: Hether S, Misono K, Lessard A. The neurokinin-3 receptor (NK3R) antagonist SB222200 prevents the apomorphine-evoked surface but not nuclear NK3R redistribution in dopaminergic neurons of the rat ventral tegmental area. Neuroscience. 2013 Sep 5;247:12-24. doi: 10.1016/j.neuroscience.2013.05.006. Epub 2013 May 11. PMID: 23673279.
8: Nagato Y, Shimai K, Kushida T, Kushida H. Staining of intestinal goblet cells with ruthenium red in semithin sections. J Electron Microsc (Tokyo). 1990;39(2):115-9. PMID: 1695236.
9: Reedy MK. Section staining for electron microscopy. Incompatibility of methyl nadic anhydride with permanganates. J Cell Biol. 1965 Jul;26(1):309-11. doi: 10.1083/jcb.26.1.309. PMID: 4159382; PMCID: PMC2106703.