1: Sameer H, Victor G, Katalin S, Henrik A. Elucidation of ligand binding and dimerization of NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) from pea (Pisum sativum L.) by structural analysis and simulations. Proteins. 2021 May 22. doi: 10.1002/prot.26151. Epub ahead of print. PMID: 34021929.
2: Chakraborty T, Polley S, Sinha D, Seal S, Sinha D, Mitra SK, Hazra J, Sau K, Pal M, Sau S. Structurally distinct unfolding intermediates formed from a staphylococcal capsule-producing enzyme retained NADPH binding activity. J Biomol Struct Dyn. 2021 May 12:1-18. doi: 10.1080/07391102.2021.1924269. Epub ahead of print. PMID: 33977860.
3: Dmitrieva VA, Domashkina VV, Ivanova AN, Sukhov VS, Tyutereva EV, Voitsekhovskaja OV. Regulation of plasmodesmata in leaves of Arabidopsis: ATP, NADPH and chlorophyll b levels matter. J Exp Bot. 2021 May 11:erab205. doi: 10.1093/jxb/erab205. Epub ahead of print. PMID: 33974689.
4: Rather GM, Pramono AA, Szekely Z, Bertino JR, Tedeschi PM. In cancer, all roads lead to NADPH. Pharmacol Ther. 2021 Apr 22;226:107864. doi: 10.1016/j.pharmthera.2021.107864. Epub ahead of print. PMID: 33894275.
5: Zhu J, Schwörer S, Berisa M, Kyung YJ, Ryu KW, Yi J, Jiang X, Cross JR, Thompson CB. Mitochondrial NADP(H) generation is essential for proline biosynthesis. Science. 2021 Apr 22:eabd5491. doi: 10.1126/science.abd5491. Epub ahead of print. PMID: 33888598.
6: Shen YP, Liao YL, Lu Q, He X, Yan ZB, Liu JZ. ATP and NADPH engineering of Escherichia coli to improve the production of 4-hydroxyphenylacetic acid using CRISPRi. Biotechnol Biofuels. 2021 Apr 20;14(1):100. doi: 10.1186/s13068-021-01954-6. PMID: 33879249; PMCID: PMC8056492.
7: Abdel-Hady GN, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. Engineering Cofactor Specificity of a Thermostable Phosphite Dehydrogenase for a Highly Efficient and Robust NADPH Regeneration System. Front Bioeng Biotechnol. 2021 Apr 1;9:647176. doi: 10.3389/fbioe.2021.647176. PMID: 33869158; PMCID: PMC8047080.
8: Zhang J, Liu Z, Tian F, Chen Y. A novel ratiometric fluorescent probe from a hemicyanine derivative for detecting NAD(P)H in a cell microenvironment. Anal Methods. 2021 Apr 14;13(14):1681-1686. doi: 10.1039/d1ay00002k. Epub 2021 Mar 23. PMID: 33861234.
9: Diehl FF, Vander Heiden MG. Mitochondrial NADPH is a pro at Pro synthesis. Nat Metab. 2021 Apr;3(4):453-455. doi: 10.1038/s42255-021-00381-z. PMID: 33833464.
10: Hörl M, Fuhrer T, Zamboni N. Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis. mBio. 2021 Apr 6;12(2):e03438-20. doi: 10.1128/mBio.03438-20. PMID: 33824210; PMCID: PMC8092299.
11: Milrad Y, Schweitzer S, Feldman Y, Yacoby I. Bi-directional electron transfer between H2 and NADPH mitigates light fluctuation responses in green algae. Plant Physiol. 2021 Feb 4:kiab051. doi: 10.1093/plphys/kiab051. Epub ahead of print. PMID: 33793951.
12: Yoshikawa Y, Nasuno R, Takagi H. An NADPH-independent mechanism enhances oxidative and nitrosative stress tolerance in yeast cells lacking glucose-6-phosphate dehydrogenase activity. Yeast. 2021 Mar 1. doi: 10.1002/yea.3558. Epub ahead of print. PMID: 33648021.
13: Deschoenmaeker F, Mihara S, Niwa T, Taguchi H, Wakabayashi KI, Toyoshima M, Shimizu H, Hisabori T. Thioredoxin pathway in anabaena sp. PCC 7120: activity of NADPH-thioredoxin reductase C. J Biochem. 2021 Feb 4:mvab014. doi: 10.1093/jb/mvab014. Epub ahead of print. PMID: 33537746.
14: Li S, Ye Z, Moreb EA, Hennigan JN, Castellanos DB, Yang T, Lynch MD. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. Metab Eng. 2021 Mar;64:26-40. doi: 10.1016/j.ymben.2021.01.005. Epub 2021 Jan 16. PMID: 33460820.
15: Shlosberg Y, Eichenbaum B, Tóth TN, Levin G, Liveanu V, Schuster G, Adir N. NADPH performs mediated electron transfer in cyanobacterial-driven bio- photoelectrochemical cells. iScience. 2020 Dec 4;24(1):101892. doi: 10.1016/j.isci.2020.101892. PMID: 33364581; PMCID: PMC7750406.
16: Qin N, Li L, Ji X, Li X, Zhang Y, Larsson C, Chen Y, Nielsen J, Liu Z. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synth Biol. 2020 Dec 18;9(12):3236-3244. doi: 10.1021/acssynbio.0c00264. Epub 2020 Nov 13. PMID: 33186034.
17: Assil-Companioni L, Büchsenschütz HC, Solymosi D, Dyczmons-Nowaczyk NG, Bauer KKF, Wallner S, Macheroux P, Allahverdiyeva Y, Nowaczyk MM, Kourist R. Engineering of NADPH Supply Boosts Photosynthesis-Driven Biotransformations. ACS Catal. 2020 Oct 16;10(20):11864-11877. doi: 10.1021/acscatal.0c02601. Epub 2020 Sep 4. PMID: 33101760; PMCID: PMC7574619.
18: Ju HQ, Lin JF, Tian T, Xie D, Xu RH. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther. 2020 Oct 7;5(1):231. doi: 10.1038/s41392-020-00326-0. PMID: 33028807; PMCID: PMC7542157.
19: Wei X, Lu Z, Li L, Zhang H, Sun F, Ma H, Wang L, Hu Y, Yan Z, Zheng H, Yang G, Liu D, Tepel M, Gao P, Zhu Z. Reducing NADPH Synthesis Counteracts Diabetic Nephropathy through Restoration of AMPK Activity in Type 1 Diabetic Rats. Cell Rep. 2020 Sep 29;32(13):108207. doi: 10.1016/j.celrep.2020.108207. PMID: 32997989.
20: Moon SJ, Dong W, Stephanopoulos GN, Sikes HD. Oxidative pentose phosphate pathway and glucose anaplerosis support maintenance of mitochondrial NADPH pool under mitochondrial oxidative stress. Bioeng Transl Med. 2020 Sep 8;5(3):e10184. doi: 10.1002/btm2.10184. PMID: 33005744; PMCID: PMC7510474.