1: Hards K, Cheung CY, Waller N, Adolph C, Keighley L, Tee ZS, Harold LK, Menorca A, Bujaroski RS, Buckley BJ, Tyndall JDA, McNeil MB, Rhee KY, Opel- Reading HK, Krause K, Preiss L, Langer JD, Meier T, Hasenoehrl EJ, Berney M, Kelso MJ, Cook GM. An amiloride derivative is active against the F1Fo-ATP synthase and cytochrome bd oxidase of Mycobacterium tuberculosis. Commun Biol. 2022 Feb 24;5(1):166. doi: 10.1038/s42003-022-03110-8. PMID: 35210534.
2: Lahiri R, Adams LB, Thomas SS, Pethe K. Sensitivity of Mycobacterium leprae to Telacebec. Emerg Infect Dis. 2022 Mar;28(3):749-751. doi: 10.3201/eid2803.210394. PMID: 35202539; PMCID: PMC8888226.
3: Malík I, Čižmárik J, Kováč G, Pecháčová M, Hudecova L. Telacebec (Q203): Is there a novel effective and safe anti-tuberculosis drug on the horizon? Ceska Slov Farm. 2021 Winter;70(5):164-171. English. doi: 10.5817/CSF2021-5-164. PMID: 35114793.
4: Gardini G, Gregori N, Matteelli A, Castelli F. Mycobacterial skin infection. Curr Opin Infect Dis. 2022 Apr 1;35(2):79-87. doi: 10.1097/QCO.0000000000000820. PMID: 35067521; PMCID: PMC8900879.
5: Lee BS, Pethe K. Telacebec: an investigational antibacterial for the treatment of tuberculosis (TB). Expert Opin Investig Drugs. 2022 Feb;31(2):139-144. doi: 10.1080/13543784.2022.2030309. Epub 2022 Jan 26. PMID: 35034512.
6: Tembe N, Machaba KE, Ndagi U, Kumalo HM, Mhlongo NN. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase-a molecular modelling perspective. J Mol Model. 2022 Jan 13;28(2):35. doi: 10.1007/s00894-021-04993-w. PMID: 35022913.
7: Malík I, Čižmárik J, Kováč G, Pecháčová M, Hudecova L. Telacebec (Q203): Is there a novel effective and safe anti-tuberculosis drug on the horizon? Ceska Slov Farm. 2021 Fall;70(5):164–171. English. doi: 10.5817/CSF2021-5-164. PMID: 34875838.
8: Zhou S, Wang W, Zhou X, Zhang Y, Lai Y, Tang Y, Xu J, Li D, Lin J, Yang X, Ran T, Chen H, Guddat LW, Wang Q, Gao Y, Rao Z, Gong H. Structure of Mycobacterium tuberculosis cytochrome bcc in complex with Q203 and TB47, two anti-TB drug candidates. Elife. 2021 Nov 25;10:e69418. doi: 10.7554/eLife.69418. PMID: 34819223; PMCID: PMC8616580.
9: Wani MA, Dhaked DK. Targeting the cytochrome bc1 complex for drug development in M. tuberculosis: review. Mol Divers. 2021 Nov 11. doi: 10.1007/s11030-021-10335-y. Epub ahead of print. PMID: 34762234.
10: Kim J, Choi J, Kang H, Ahn J, Hutchings J, van Niekerk C, Park D, Kim J, Jeon Y, Nam K, Shin S, Shin BS. Safety, Tolerability, and Pharmacokinetics of Telacebec (Q203), a New Antituberculosis Agent, in Healthy Subjects. Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0143621. doi: 10.1128/AAC.01436-21. Epub 2021 Oct 25. PMID: 34694872; PMCID: PMC8765288.
11: Thomas SS, Pethe K. Determination of Bioenergetic Parameters in Mycobacterium ulcerans. Methods Mol Biol. 2022;2387:219-230. doi: 10.1007/978-1-0716-1779-3_21. PMID: 34643916.
12: Yanofsky DJ, Di Trani JM, Król S, Abdelaziz R, Bueler SA, Imming P, Brzezinski P, Rubinstein JL. Structure of mycobacterial CIII2CIV2 respiratory supercomplex bound to the tuberculosis drug candidate telacebec (Q203). Elife. 2021 Sep 30;10:e71959. doi: 10.7554/eLife.71959. PMID: 34590581; PMCID: PMC8523172.
13: Sorayah R, Moraski GC, Barkan D, Pethe K. The QcrB Inhibitors TB47 and Telacebec Do Not Potentiate the Activity of Clofazimine in Mycobacterium abscessus. Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0096421. doi: 10.1128/AAC.00964-21. Epub 2021 Sep 20. PMID: 34543090; PMCID: PMC8597762.
14: Gupta S, Fatima Z, Kumawat S. Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net. Biosystems. 2021 Nov;209:104509. doi: 10.1016/j.biosystems.2021.104509. Epub 2021 Aug 27. PMID: 34461147.
15: Komm O, Almeida DV, Converse PJ, Omansen TF, Nuermberger EL. Impact of Dose, Duration, and Immune Status on Efficacy of Ultrashort Telacebec Regimens in Mouse Models of Buruli Ulcer. Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0141821. doi: 10.1128/AAC.01418-21. Epub 2021 Aug 30. PMID: 34460302; PMCID: PMC8522762.
16: Cai Y, Jaecklein E, Mackenzie JS, Papavinasasundaram K, Olive AJ, Chen X, Steyn AJC, Sassetti CM. Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase. PLoS Pathog. 2021 Jul 28;17(7):e1008911. doi: 10.1371/journal.ppat.1008911. PMID: 34320028; PMCID: PMC8351954.
17: Hopfner SM, Lee BS, Kalia NP, Miller MJ, Pethe K, Moraski GC. Structure guided generation of thieno[3,2-d]pyrimidin-4-amine Mycobacterium tuberculosis bd oxidase inhibitors. RSC Med Chem. 2021 Jan 12;12(1):73-77. doi: 10.1039/d0md00398k. PMID: 34046599; PMCID: PMC8130631.
18: Wang J, Jing W, Shi J, Huo F, Shang Y, Wang F, Chu N, Pang Y. Bipolar Distribution of Minimum Inhibitory Concentration of Q203 Across Mycobacterial Species. Microb Drug Resist. 2021 Aug;27(8):1013-1017. doi: 10.1089/mdr.2020.0239. Epub 2021 Feb 26. PMID: 33646044.
19: Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol. 2021 Jan 11;10:611683. doi: 10.3389/fcimb.2020.611683. PMID: 33505923; PMCID: PMC7831573.
20: Urban M, Šlachtová V, Brulíková L. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis. Eur J Med Chem. 2021 Feb 15;212:113139. doi: 10.1016/j.ejmech.2020.113139. Epub 2020 Dec 29. PMID: 33422979.