Synonym
Violanthrone-79; Violanthrone 79; Violanthrone79;
IUPAC/Chemical Name
16,17-bis(octyloxy)anthra[9,1,2-cde]benzo[rst]pentaphene-5,10-dione
InChi Key
LLPQZABTDLOYAL-UHFFFAOYSA-N
InChi Code
InChI=1S/C50H48O4/c1-3-5-7-9-11-17-27-53-41-29-39-31-19-13-15-21-35(31)49(51)37-25-23-33-34-24-26-38-44-40(32-20-14-16-22-36(32)50(38)52)30-42(54-28-18-12-10-8-6-4-2)48(46(34)44)47(41)45(33)43(37)39/h13-16,19-26,29-30H,3-12,17-18,27-28H2,1-2H3
SMILES Code
O=C1C2=CC=CC=C2C3=CC(OCCCCCCCC)=C4C5=C3C1=CC=C5C6=CC=C(C7=C8C=C(OCCCCCCCC)C4=C76)C(C9=C8C=CC=C9)=O
Purity
>95% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
Preparing Stock Solutions
The following data is based on the
product
molecular weight
712.93
Batch specific molecular weights may vary
from batch to batch
due to the degree of hydration, which will
affect the solvent
volumes required to prepare stock solutions.
Concentration / Solvent Volume / Mass |
1 mg |
5 mg |
10 mg |
1 mM |
1.15 mL |
5.76 mL |
11.51 mL |
5 mM |
0.23 mL |
1.15 mL |
2.3 mL |
10 mM |
0.12 mL |
0.58 mL |
1.15 mL |
50 mM |
0.02 mL |
0.12 mL |
0.23 mL |
1: Crovador R, Heim H, Cottam S, Feron K, Bhatia V, Louie F, Sherwood CP, Dastoor PC, Brichta AM, Lim R, Griffith MJ. Advanced Control of Drug Delivery for In Vivo Health Applications via Highly Biocompatible Self-Assembled Organic Nanoparticles. ACS Appl Bio Mater. 2021 Aug 16;4(8):6338-6350. doi: 10.1021/acsabm.1c00581. Epub 2021 Jul 20. PMID: 35006893.
2: Zhang Z, Song J, Lin YJ, Wang X, Biswal SL. Comparing the Coalescence Rate of Water-in-Oil Emulsions Stabilized with Asphaltenes and Asphaltene-like Molecules. Langmuir. 2020 Jul 14;36(27):7894-7900. doi: 10.1021/acs.langmuir.0c00966. Epub 2020 Jun 27. PMID: 32597186.
3: Jian C, Poopari MR, Liu Q, Zerpa N, Zeng H, Tang T. Reduction of Water/Oil Interfacial Tension by Model Asphaltenes: The Governing Role of Surface Concentration. J Phys Chem B. 2016 Jun 30;120(25):5646-54. doi: 10.1021/acs.jpcb.6b03691. Epub 2016 Jun 17. PMID: 27268710.
4: Zhu X, Chen D, Wu G. Molecular dynamic simulation of asphaltene co- aggregation with humic acid during oil spill. Chemosphere. 2015 Nov;138:412-21. doi: 10.1016/j.chemosphere.2015.06.074. Epub 2015 Jul 3. PMID: 26149857.
5: Cyran JD, Krummel AT. Probing structural features of self-assembled violanthrone-79 using two dimensional infrared spectroscopy. J Chem Phys. 2015 Jun 7;142(21):212435. doi: 10.1063/1.4919637. PMID: 26049455.