MedKoo Cat#: 581773 | Name: Rorifamide

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Rorifamide is crystalline substance isolated from herb Han-Tsai, Rorippa montana (Cruciferae).

Chemical Structure

Rorifamide
Rorifamide
CAS#53078-91-4

Theoretical Analysis

MedKoo Cat#: 581773

Name: Rorifamide

CAS#: 53078-91-4

Chemical Formula: C11H23NO3S

Exact Mass: 249.1399

Molecular Weight: 249.37

Elemental Analysis: C, 52.98; H, 9.30; N, 5.62; O, 19.25; S, 12.86

Price and Availability

This product is currently not in stock but may be available through custom synthesis. To ensure cost efficiency, the minimum order quantity is 1 gram. The estimated lead time is 2 to 4 months, with pricing dependent on the complexity of the synthesis (typically high for intricate chemistries). Quotes for quantities below 1 gram will not be provided. To request a quote, please click the button below. Note: If this product becomes available in stock in the future, pricing will be listed accordingly.
Bulk Inquiry
Related CAS #
No Data
Synonym
Rorifamide; 10-(Methylsulfonyl)decanamide Systematic Name; Decanamide, 10-(methylsulfonyl)-.
IUPAC/Chemical Name
Decanamide, 10-(methylsulfonyl)-
InChi Key
MZXDOHVJCAJUKK-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H23NO3S/c1-16(14,15)10-8-6-4-2-3-5-7-9-11(12)13/h2-10H2,1H3,(H2,12,13)
SMILES Code
O=C(N)CCCCCCCCCS(=O)(C)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 249.37 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Thongrod S, Wanichanon C, Sobhon P. Distribution of neuropeptide F in the ventral nerve cord and its possible role on testicular development and germ cell proliferation in the giant freshwater prawn, Macrobrachium rosenbergii. Cell Tissue Res. 2019 Feb 19. doi: 10.1007/s00441-019-02999-8. [Epub ahead of print] PubMed PMID: 30778730. 2: Petrov AA, Podvyaznaya IM, Zaitseva OV. Architecture of the nervous system in metacercariae of Diplostomum pseudospathaceum Niewiadomska, 1984 (Digenea). Parasitol Res. 2019 Feb 5. doi: 10.1007/s00436-019-06231-y. [Epub ahead of print] PubMed PMID: 30725179. 3: Tran NM, Mykles DL, Elizur A, Ventura T. Characterization of G-protein coupled receptors from the blackback land crab Gecarcinus lateralis Y organ transcriptome over the molt cycle. BMC Genomics. 2019 Jan 22;20(1):74. doi: 10.1186/s12864-018-5363-9. PubMed PMID: 30669976; PubMed Central PMCID: PMC6341585. 4: Hillyer JF. Insect heart rhythmicity is modulated by evolutionarily conserved neuropeptides and neurotransmitters. Curr Opin Insect Sci. 2018 Oct;29:41-48. doi: 10.1016/j.cois.2018.06.002. Epub 2018 Jun 11. Review. PubMed PMID: 30551824. 5: Attenborough RMF, Hayward DC, Wiedemann U, Forêt S, Miller DJ, Ball EE. Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis. Dev Biol. 2019 Feb 1;446(1):56-67. doi: 10.1016/j.ydbio.2018.11.022. Epub 2018 Dec 3. PubMed PMID: 30521809. 6: Tarr EA, Fidler BM, Gee KE, Anderson CM, Jager AK, Gallagher NM, Carroll KP, Fabian-Fine R. Distribution of FMRFamide-related peptides and co-localization with glutamate in Cupiennius salei, an invertebrate model system. Cell Tissue Res. 2018 Nov 8. doi: 10.1007/s00441-018-2949-0. [Epub ahead of print] PubMed PMID: 30406824. 7: Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory Hormone and FMRFamide-Like Peptide Systems. Front Neurosci. 2018 Oct 18;12:747. doi: 10.3389/fnins.2018.00747. eCollection 2018. PubMed PMID: 30405335; PubMed Central PMCID: PMC6200920. 8: Oranth A, Schultheis C, Tolstenkov O, Erbguth K, Nagpal J, Hain D, Brauner M, Wabnig S, Steuer Costa W, McWhirter RD, Zels S, Palumbos S, Miller Iii DM, Beets I, Gottschalk A. Food Sensation Modulates Locomotion by Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network. Neuron. 2018 Dec 19;100(6):1414-1428.e10. doi: 10.1016/j.neuron.2018.10.024. Epub 2018 Nov 1. PubMed PMID: 30392795. 9: Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet. 2018 Sep;32(3):183-194. doi: 10.1080/01677063.2018.1502761. Epub 2018 Oct 10. PubMed PMID: 30303434. 10: Monedero Cobeta I, Stadler CB, Li J, Yu P, Thor S, Benito-Sipos J. Specification of Drosophila neuropeptidergic neurons by the splicing component brr2. PLoS Genet. 2018 Aug 22;14(8):e1007496. doi: 10.1371/journal.pgen.1007496. eCollection 2018 Aug. PubMed PMID: 30133436; PubMed Central PMCID: PMC6122834. 11: Matsuo Y, Yamanaka A, Matsuo R. RFamidergic neurons in the olfactory centers of the terrestrial slug Limax. Zoological Lett. 2018 Aug 9;4:22. doi: 10.1186/s40851-018-0108-9. eCollection 2018. PubMed PMID: 30116553; PubMed Central PMCID: PMC6085721. 12: Zhang L, Khattar N, Kemenes I, Kemenes G, Zrinyi Z, Pirger Z, Vertes A. Subcellular Peptide Localization in Single Identified Neurons by Capillary Microsampling Mass Spectrometry. Sci Rep. 2018 Aug 15;8(1):12227. doi: 10.1038/s41598-018-29704-z. PubMed PMID: 30111831; PubMed Central PMCID: PMC6093924. 13: Ravi P, Trivedi D, Hasan G. FMRFa receptor stimulated Ca2+ signals alter the activity of flight modulating central dopaminergic neurons in Drosophila melanogaster. PLoS Genet. 2018 Aug 15;14(8):e1007459. doi: 10.1371/journal.pgen.1007459. eCollection 2018 Aug. PubMed PMID: 30110323; PubMed Central PMCID: PMC6110513. 14: Vafopoulou X, Hindley-Smith M, Steel CGH. Neuropeptide- and serotonin- cells in the brain of Rhodnius prolixus (Hemiptera) associated with the circadian clock. Gen Comp Endocrinol. 2018 Jul 23. pii: S0016-6480(18)30263-6. doi: 10.1016/j.ygcen.2018.07.012. [Epub ahead of print] PubMed PMID: 30048647. 15: Battonyai I, Voronezhskaya EE, Obukhova A, Horváth R, Nezlin LP, Elekes K. Neuronal Development in the Larvae of the Invasive Biofouler Dreissena polymorpha (Mollusca: Bivalvia), with Special Attention to Sensory Elements and Swimming Behavior. Biol Bull. 2018 Jun;234(3):192-206. doi: 10.1086/698511. Epub 2018 Jun 18. PubMed PMID: 29949436. 16: Stamatis SA, Worsaae K, Garm A. Regeneration of the Rhopalium and the Rhopalial Nervous System in the Box Jellyfish Tripedalia cystophora. Biol Bull. 2018 Feb;234(1):22-36. doi: 10.1086/697071. Epub 2018 Apr 4. PubMed PMID: 29694798. 17: Yurchenko OV, Skiteva OI, Voronezhskaya EE, Dyachuk VA. Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia). Front Zool. 2018 Apr 11;15:10. doi: 10.1186/s12983-018-0259-8. eCollection 2018. PubMed PMID: 29681988; PubMed Central PMCID: PMC5896133. 18: Scaros AT, Croll RP, Baratte S. Immunohistochemical Approach to Understanding the Organization of the Olfactory System in the Cuttlefish, Sepia officinalis. ACS Chem Neurosci. 2018 Aug 15;9(8):2074-2088. doi: 10.1021/acschemneuro.8b00021. Epub 2018 Apr 5. PubMed PMID: 29578683. 19: Li Y, Cao Z, Li H, Liu H, Lü Z, Chi C. Identification, Characterization, and Expression Analysis of a FMRFamide-Like Peptide Gene in the Common Chinese Cuttlefish (Sepiella japonica). Molecules. 2018 Mar 23;23(4). pii: E742. doi: 10.3390/molecules23040742. PubMed PMID: 29570647; PubMed Central PMCID: PMC6017766. 20: Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics. 2018 Jun;39:45-63. doi: 10.1016/j.margen.2018.01.005. Epub 2018 Mar 8. PubMed PMID: 29526397.