MedKoo Cat#: 412241 | Name: Sodium feredetate
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Sodium feredetate is indicated for Iron deficiency anaemia.

Chemical Structure

Sodium feredetate
Sodium feredetate
CAS#15708-41-5

Theoretical Analysis

MedKoo Cat#: 412241

Name: Sodium feredetate

CAS#: 15708-41-5

Chemical Formula: C10H12FeN2NaO8

Exact Mass: 366.9841

Molecular Weight:

Elemental Analysis: C, 32.72; H, 3.30; Fe, 15.21; N, 7.63; Na, 6.26; O, 34.87

Price and Availability

Size Price Availability Quantity
100g USD 231.60 2 Weeks
500g USD 481.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Sodium feredetate; CCRIS6795; CCRIS-6795; CCRIS 6795
IUPAC/Chemical Name
Ferrate(1-), ((N,N'-1,2-ethanediylbis(N-((carboxy-kappaO)methyl)glycinato-kappaN,kappaO))(4-))-, sodium (1:1), (OC-6-21)-
InChi Key
MKWYFZFMAMBPQK-UHFFFAOYSA-J
InChi Code
InChI=1S/C10H16N2O8.Fe.Na/c13-7(14)3-11(4-8(15)16)1-2-12(5-9(17)18)6-10(19)20;;/h1-6H2,(H,13,14)(H,15,16)(H,17,18)(H,19,20);;/q;+3;+1/p-4
SMILES Code
O=C1CN2CC[N@@]3CC([O-][Fe+3]([O-]C(C2)=O)([O-]1)[O-]C(C3)=O)=O.[Na+]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 0.00 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Roverso M, Di Marco V, Favaro G, Di Gangi IM, Badocco D, Zerlottin M, Refosco D, Tapparo A, Bogialli S, Pastore P. New insights in the slow ligand exchange reaction between Cr(III)-EDTA and Fe(III), and direct analysis of free and complexed EDTA in tannery wastewaters by liquid chromatography - Tandem mass spectrometry. Chemosphere. 2020 Oct 1;264(Pt 1):128487. doi: 10.1016/j.chemosphere.2020.128487. Epub ahead of print. PMID: 33038755. 2: Zavarzina DG, Zhilina TN, Kostrikina NA, Toshchakov SV, Kublanov IV. Isachenkonia alkalipeptolytica gen. nov. sp. nov., a new anaerobic, alkaliphilic proteolytic bacterium capable of reducing Fe(III) and sulfur. Int J Syst Evol Microbiol. 2020 Aug;70(8):4730-4738. doi: 10.1099/ijsem.0.004341. Epub 2020 Jul 22. PMID: 32697189. 3: Field MS, Mithra P, Estevez D, Peña-Rosas JP. Wheat flour fortification with iron for reducing anaemia and improving iron status in populations. Cochrane Database Syst Rev. 2020 Jul 17;7:CD011302. doi: 10.1002/14651858.CD011302.pub2. PMID: 32677706. 4: Xie S, Shao W, Zhan H, Wang Z, Ge C, Li Q, Fu W. Cu(II)-EDTA removal by a two-step Fe(0) electrocoagulation in near natural water: Sequent transformation and oxidation of EDTA complexes. J Hazard Mater. 2020 Jun 15;392:122473. doi: 10.1016/j.jhazmat.2020.122473. Epub 2020 Mar 6. PMID: 32193116. 5: Zhao J, Feng K, Liu SH, Lin CW, Zhang S, Li S, Li W, Chen J. Kinetics of biocathodic electron transfer in a bioelectrochemical system coupled with chemical absorption for NO removal. Chemosphere. 2020 Jun;249:126095. doi: 10.1016/j.chemosphere.2020.126095. Epub 2020 Feb 3. PMID: 32044608. 6: Chen Y, Sun X, Pan W, Yu G, Wang J. Fe3+-Sensitive Carbon Dots for Detection of Fe3+ in Aqueous Solution and Intracellular Imaging of Fe3+ Inside Fungal Cells. Front Chem. 2020 Jan 15;7:911. doi: 10.3389/fchem.2019.00911. PMID: 32010664; PMCID: PMC6974440. 7: Yuan Y, Zhao W, Liu Z, Ling C, Zhu C, Liu F, Li A. Low-Fe(III) driven UV/Air process for enhanced recovery of heavy metals from EDTA complexed system. Water Res. 2020 Mar 15;171:115375. doi: 10.1016/j.watres.2019.115375. Epub 2019 Dec 13. PMID: 31865128. 8: Chen J, He J, Wang X, Hrynsphan D, Wu J, Chen J, Yao J. Reduction of FeII(EDTA)-NO by Mn powder in wet flue gas denitrification technology: stoichiometry, kinetics, and thermodynamics. Environ Sci Pollut Res Int. 2019 Dec;26(36):36933-36941. doi: 10.1007/s11356-019-06901-5. Epub 2019 Nov 19. PMID: 31745767. 9: Zhang Y, Luo G, Wang Q, Zhang Y, Zhou M. Kinetic study of the degradation of rhodamine B using a flow-through UV/electro-Fenton process with the presence of ethylenediaminetetraacetic acid. Chemosphere. 2020 Feb;240:124929. doi: 10.1016/j.chemosphere.2019.124929. Epub 2019 Sep 21. PMID: 31561158. 10: Jahan TA, Vandenberg A, Glahn RP, Tyler RT, Reaney MJT, Tar'an B. Iron Fortification and Bioavailability of Chickpea (Cicer arietinum L.) Seeds and Flour. Nutrients. 2019 Sep 18;11(9):2240. doi: 10.3390/nu11092240. PMID: 31540391; PMCID: PMC6770251. 11: Guo T, Zhang C, Zhao J, Ma C, Li S, Li W. Evaluation of polypyrrole-modified bioelectrodes in a chemical absorption-bioelectrochemical reduction integrated system for NO removal. Sci Rep. 2019 Sep 10;9(1):13030. doi: 10.1038/s41598-019-49610-2. PMID: 31506560; PMCID: PMC6737099. 12: Liu Q, Yu K, Yi P, Cao W, Chen X, Zhang X. Regeneration of Fe II /Fe III complex from NO chelating absorption by microbial fuel cell. Environ Sci Pollut Res Int. 2019 Jul;26(19):19540-19548. doi: 10.1007/s11356-019-05291-y. Epub 2019 May 10. PMID: 31077045. 13: Lai X, Ning XA, He Y, Yuan Y, Sun J, Ke Y, Man X. Treatment of a simulated sludge by ultrasonic zero-valent iron/EDTA/Air process: Interferences of inorganic salts in polyaromatic hydrocarbon removal. Waste Manag. 2019 Feb 15;85:548-556. doi: 10.1016/j.wasman.2019.01.009. Epub 2019 Jan 22. PMID: 30803610. 14: Velasco A, Morgan-Sagastume JM, González-Sánchez A. Evaluation of a hybrid physicochemical/biological technology to remove toxic H2S from air with elemental sulfur recovery. Chemosphere. 2019 May;222:732-741. doi: 10.1016/j.chemosphere.2019.02.005. Epub 2019 Feb 4. PMID: 30738316. 15: Ryzhmanova Y, Abashina T, Petrova D, Shcherbakova V. Desulfovibrio gilichinskyi sp. nov., a cold-adapted sulfate-reducing bacterium from a Yamal Peninsula cryopeg. Int J Syst Evol Microbiol. 2019 Apr;69(4):1081-1086. doi: 10.1099/ijsem.0.003272. Epub 2019 Feb 8. PMID: 30735114. 16: Zhou XS, Fan RQ, Ye HX, Xing K, Wang AN, Wang P, Hao SE, Yang YL. A Dual Associated-Functional Fluorescent Switch: From Alternate Detection Cycle for Fe(III) and pH to Molecular Logic Operations. Inorg Chem. 2019 Feb 4;58(3):2122-2132. doi: 10.1021/acs.inorgchem.8b03209. Epub 2019 Jan 23. PMID: 30672708. 17: Biswakarma J, Kang K, Borowski SC, Schenkeveld WDC, Kraemer SM, Hering JG, Hug SJ. Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides. Environ Sci Technol. 2019 Jan 2;53(1):88-97. doi: 10.1021/acs.est.8b03910. Epub 2018 Dec 20. PMID: 30571098. 18: Müller B, Kovács K, Pham HD, Kavak Y, Pechoušek J, Machala L, Zbořil R, Szenthe K, Abadía J, Fodor F, Klencsár Z, Solti Á. Chloroplasts preferentially take up ferric-citrate over iron-nicotianamine complexes in Brassica napus. Planta. 2019 Mar;249(3):751-763. doi: 10.1007/s00425-018-3037-0. Epub 2018 Oct 31. PMID: 30382344. 19: Pan Y, Su H, Zhu Y, Vafaei Molamahmood H, Long M. CaO2 based Fenton-like reaction at neutral pH: Accelerated reduction of ferric species and production of superoxide radicals. Water Res. 2018 Nov 15;145:731-740. doi: 10.1016/j.watres.2018.09.020. Epub 2018 Sep 5. PMID: 30216867. 20: Lopez Barrera EC, Gaur S, Andrade JE, Engeseth NJ, Nielsen C, Helferich WG. Iron Fortification of Spiced Vinegar in the Philippines. J Food Sci. 2018 Oct;83(10):2602-2611. doi: 10.1111/1750-3841.14327. Epub 2018 Sep 7. PMID: 30192015.