1: Landeros-Martínez LL, Glossman-Mitnik D, Flores-Holguín N. Studying the chemical reactivity properties of the target tumor-environment tripeptides NGR (asparagine-glycine-arginine) and RGD (arginine-glycine-aspartic acid) in their interactions with tamoxifen through conceptual density functional theory. J Mol Model. 2018 Nov 9;24(12):336. doi: 10.1007/s00894-018-3868-4. PMID: 30413890.
2: Misra C, Kumar M, Sharma G, Kumar R, Singh B, Katare OP, Raza K. Glycinated fullerenes for tamoxifen intracellular delivery with improved anticancer activity and pharmacokinetics. Nanomedicine (Lond). 2017 May;12(9):1011-1023. doi: 10.2217/nnm-2016-0432. Epub 2017 Apr 25. PMID: 28440713.
3: Chesnoy-Marchais D. Potentiation of glycine responses by dideoxyforskolin and tamoxifen in rat spinal neurons. Eur J Neurosci. 2003 Feb;17(4):681-91. doi: 10.1046/j.1460-9568.2003.02481.x. PMID: 12603258.
4: Mishra R, Bhadauria S, Murthy PK, Murthy PS. Glycine soya diet synergistically enhances the suppressive effect of tamoxifen and inhibits tamoxifen-promoted hepatocarcinogenesis in 7,12-dimethylbenz[α]anthracene- induced rat mammary tumor model. Food Chem Toxicol. 2011 Feb;49(2):434-40. doi: 10.1016/j.fct.2010.11.020. Epub 2010 Nov 17. PMID: 21092749.
5: Chen C, Hou L, Zhang H, Zhu L, Zhang H, Zhang C, Shi J, Wang L, Jia X, Zhang Z. Single-walled carbon nanotubes mediated targeted tamoxifen delivery system using aspargine-glycine-arginine peptide. J Drug Target. 2013 Nov;21(9):809-21. doi: 10.3109/1061186X.2013.829071. Epub 2013 Sep 11. PMID: 24024582.
6: Duforestel M, Nadaradjane A, Bougras-Cartron G, Briand J, Olivier C, Frenel JS, Vallette FM, Lelièvre SA, Cartron PF. Glyphosate Primes Mammary Cells for Tumorigenesis by Reprogramming the Epigenome in a TET3-Dependent Manner. Front Genet. 2019 Sep 27;10:885. doi: 10.3389/fgene.2019.00885. PMID: 31611907; PMCID: PMC6777643.
7: Czerny B, Teister M, Juzyszyn Z, Kamiński A, Pawlik A. Effect of tamoxifen and raloxifene on the conjugation of bile acids with taurine and glycine in ovariectomized rats. Pharmacol Rep. 2006 May-Jun;58(3):435-8. PMID: 16845220.
8: Chesnoy-Marchais D. The estrogen receptor modulator tamoxifen enhances spontaneous glycinergic synaptic inhibition of hypoglossal motoneurons. Endocrinology. 2005 Oct;146(10):4302-11. doi: 10.1210/en.2005-0453. Epub 2005 Jun 23. PMID: 15976053.
9: Kim HS, Tian L, Kim H, Moon WK. Investigation of discriminant metabolites in tamoxifen-resistant and choline kinase-alpha-downregulated breast cancer cells using 1H-nuclear magnetic resonance spectroscopy. PLoS One. 2017 Jun 23;12(6):e0179773. doi: 10.1371/journal.pone.0179773. PMID: 28644842; PMCID: PMC5482454.
10: Shats I, Deng M, Davidovich A, Zhang C, Kwon JS, Manandhar D, Gordân R, Yao G, You L. Expression level is a key determinant of E2F1-mediated cell fate. Cell Death Differ. 2017 Apr;24(4):626-637. doi: 10.1038/cdd.2017.12. Epub 2017 Feb 17. PMID: 28211871; PMCID: PMC5384025.
11: Jiang P, Kong Y, Zhang XB, Wang W, Liu CF, Xu TL. Glycine receptor in rat hippocampal and spinal cord neurons as a molecular target for rapid actions of 17-beta-estradiol. Mol Pain. 2009 Jan 12;5:2. doi: 10.1186/1744-8069-5-2. PMID: 19138413; PMCID: PMC2651124.
12: Ruenitz PC, Nanavati NT. Identification and distribution in the rat of acidic metabolites of tamoxifen. Drug Metab Dispos. 1990 Sep-Oct;18(5):645-8. PMID: 1981714.
13: Levenson AS, MacGregor Schafer JI, Bentrem DJ, Pease KM, Jordan VC. Control of the estrogen-like actions of the tamoxifen-estrogen receptor complex by the surface amino acid at position 351. J Steroid Biochem Mol Biol. 2001 Jan- Mar;76(1-5):61-70. doi: 10.1016/s0960-0760(00)00143-6. PMID: 11384864.
14: Lubet RA, Beger RD, Miller MS, Luster J, Seifried HE, Grubbs CJ. Comparison of Effects of Diet on Mammary Cancer: Efficacy of Various Preventive Agents and Metabolomic Changes of Different Diets and Agents. Cancer Prev Res (Phila). 2018 Dec;11(12):831-840. doi: 10.1158/1940-6207.CAPR-18-0116. Epub 2018 Nov 20. PMID: 30459210.
15: Shennan DB, Thomson J. Specificity of the volume-activated amino acid efflux pathway in cultured human breast cancer cells. Gen Physiol Biophys. 2011 Mar;30(1):45-51. doi: 10.4149/gpb_2011_01_45. PMID: 21460411.
16: Schönrock B, Bormann J. Modulation of hippocampal glycine receptor channels by protein kinase C. Neuroreport. 1995 Jan 26;6(2):301-4. doi: 10.1097/00001756-199501000-00019. PMID: 7756615.
17: Bai A, Mao C, Jenkins RW, Szulc ZM, Bielawska A, Hannun YA. Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PLoS One. 2017 Jun 14;12(6):e0177805. doi: 10.1371/journal.pone.0177805. PMID: 28614356; PMCID: PMC5470663.
18: Castrignanò S, Di Nardo G, Sadeghi SJ, Gilardi G. Influence of inter-domain dynamics and surrounding environment flexibility on the direct electrochemistry and electrocatalysis of self-sufficient cytochrome P450 3A4-BMR chimeras. J Inorg Biochem. 2018 Nov;188:9-17. doi: 10.1016/j.jinorgbio.2018.08.003. Epub 2018 Aug 4. PMID: 30098472.
19: MacGregor Schafer J, Liu H, Bentrem DJ, Zapf JW, Jordan VC. Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351. Cancer Res. 2000 Sep 15;60(18):5097-105. PMID: 11016635.
20: Maria RM, Altei WF, Selistre-de-Araujo HS, Colnago LA. Impact of chemotherapy on metabolic reprogramming: Characterization of the metabolic profile of breast cancer MDA-MB-231 cells using 1H HR-MAS NMR spectroscopy. J Pharm Biomed Anal. 2017 Nov 30;146:324-328. doi: 10.1016/j.jpba.2017.08.038. Epub 2017 Sep 13. PMID: 28915495.