MedKoo Cat#: 533939 | Name: Molybdenum phosphide
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Molybdenum Phosphide has been investigated as a highly efficient electrocatalyst for various applications such as hydrogen evolution and CO2 reduction. Molybdenum phosphide exhibits high activity towards the hydrogen evolution reaction (HER) in both acid and alkaline media even in bulk form. Comparative analysis of Mo, Mo3P and MoP as catalysts for HER clearly indicates that phosphorization can potentially modify the properties of the metal and different degrees of phosphorization lead to distinct activities and stabilities.

Chemical Structure

Molybdenum phosphide
Molybdenum phosphide
CAS#12163-69-8 (MoP)

Theoretical Analysis

MedKoo Cat#: 533939

Name: Molybdenum phosphide

CAS#: 12163-69-8 (MoP)

Chemical Formula: MoP

Exact Mass: 0.0000

Molecular Weight: 126.93

Elemental Analysis: Mo, 75.60; P, 24.40

Price and Availability

Size Price Availability Quantity
1g USD 250.00 Ready to ship
5g USD 950.00 Ready to ship
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
12163-69-8 (MoP) 61219-54-3 (MoP2)
Synonym
Molybdenum phosphide; Molybdenum monophosphide; Molybdenum phosphide (Mo2P2);
IUPAC/Chemical Name
Molybdenum phosphide
InChi Key
AMWVZPDSWLOFKA-UHFFFAOYSA-N
InChi Code
InChI=1S/Mo.P
SMILES Code
P#[Mo]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Certificate of Analysis
Safety Data Sheet (SDS)

Preparing Stock Solutions

The following data is based on the product molecular weight 126.93 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Huang Y, Chen H, Zhang B. Constructing Molybdenum Phosphide@Cobalt Phosphide Heterostructure Nanoarrays on Nickel Foam as a Bifunctional Electrocatalyst for Enhanced Overall Water Splitting. Molecules. 2023 Apr 22;28(9):3647. doi: 10.3390/molecules28093647. PMID: 37175057; PMCID: PMC10180104. 2: Sun C, He Y, Alharbi NS, Yang S, Chen C. Three-dimensional ordered macroporous molybdenum doped NiCoP honeycomb electrode for two-step water electrolysis. J Colloid Interface Sci. 2023 Jul 15;642:13-22. doi: 10.1016/j.jcis.2023.03.131. Epub 2023 Mar 24. PMID: 37001452. 3: Loomba S, Khan MW, Haris M, Mousavi SM, Zavabeti A, Xu K, Tadich A, Thomsen L, McConville CF, Li Y, Walia S, Mahmood N. Nitrogen-Doped Porous Nickel Molybdenum Phosphide Sheets for Efficient Seawater Splitting. Small. 2023 May;19(18):e2207310. doi: 10.1002/smll.202207310. Epub 2023 Feb 8. PMID: 36751959. 4: Han HJ, Kumar S, Jin G, Ji X, Hart JL, Hynek DJ, Sam QP, Hasse V, Felser C, Cahill DG, Sundararaman R, Cha JJ. Topological Metal MoP Nanowire for Interconnect. Adv Mater. 2023 Mar;35(13):e2208965. doi: 10.1002/adma.202208965. Epub 2023 Feb 17. PMID: 36745845. 5: Chen P, Li K, Ye Y, Wu D, Tong Y. Coupled MoO3-x@CoP heterostructure as a pH-universal electrode for hydrogen generation at a high current density. Dalton Trans. 2023 Feb 21;52(8):2262-2271. doi: 10.1039/d2dt03551k. PMID: 36723109. 6: Ma H, Yan W, Yu Y, Deng L, Hong Z, Song L, Li L. Phosphorus vacancies improve the hydrogen evolution of MoP electrocatalysts. Nanoscale. 2023 Jan 19;15(3):1357-1364. doi: 10.1039/d2nr05964a. PMID: 36562326. 7: Golubeva MA, Mukhtarova M, Sadovnikov AA, Maximov AL. Bulk Molybdenum and Tungsten Phosphides for Selective Phenol Production from Guaiacol. ACS Omega. 2022 Oct 27;7(44):40586-40595. doi: 10.1021/acsomega.2c06396. PMID: 36385816; PMCID: PMC9647851. 8: Chang X, Yan J, Ding X, Jia Y, Li S, Zhang M. One-Dimensional CoMoP Nanostructures as Bifunctional Electrodes for Overall Water Splitting. Nanomaterials (Basel). 2022 Nov 3;12(21):3886. doi: 10.3390/nano12213886. PMID: 36364664; PMCID: PMC9658805. 9: Kaewtrakulchai N, Smuthkochorn A, Manatura K, Panomsuwan G, Fuji M, Eiad-Ua A. Porous Biochar Supported Transition Metal Phosphide Catalysts for Hydrocracking of Palm Oil to Bio-Jet Fuel. Materials (Basel). 2022 Sep 22;15(19):6584. doi: 10.3390/ma15196584. PMID: 36233927; PMCID: PMC9573363. 10: Zhang Q, Bown M, Pastor-Pérez L, Duyar MS, Reina TR. CO2 Conversion via Reverse Water Gas Shift Reaction Using Fully Selective Mo-P Multicomponent Catalysts. Ind Eng Chem Res. 2022 Aug 31;61(34):12857-12865. doi: 10.1021/acs.iecr.2c00305. Epub 2022 Aug 19. PMID: 36065445; PMCID: PMC9437872. 11: Wang X, Meng L, Liu X, Yan Z, Liu W, Deng N, Wei L, Cheng B, Kang W. Cobalt- doping of molybdenum phosphide nanofibers for trapping-diffusion-conversion of lithium polysulfides towards high-rate and long-life lithium-sulfur batteries. J Colloid Interface Sci. 2022 Dec 15;628(Pt A):247-258. doi: 10.1016/j.jcis.2022.07.142. Epub 2022 Jul 27. PMID: 35932664. 12: Wang W, Qi J, Zhai L, Ma C, Ke C, Zhai W, Wu Z, Bao K, Yao Y, Li S, Chen B, Repaka DVM, Zhang X, Ye R, Lai Z, Luo G, Chen Y, He Q. Preparation of 2D Molybdenum Phosphide via Surface-Confined Atomic Substitution. Adv Mater. 2022 Sep;34(35):e2203220. doi: 10.1002/adma.202203220. Epub 2022 Jul 28. PMID: 35902244. 13: Huang T, Xu G, Ding H, Zhang L, Wei B, Liu X. Ultrafine cobalt molybdenum phosphide nanoparticles embedded in crosslinked nitrogen-doped carbon nanofiber as efficient bifunctional catalyst for overall water splitting. J Colloid Interface Sci. 2022 Nov;625:956-964. doi: 10.1016/j.jcis.2022.06.093. Epub 2022 Jun 24. PMID: 35779522. 14: Li C, Hong W, Cai Q, Jian C. Directional Construction of a 1T0.63-MoSe2@MoP Multiphase-Interface Catalyst for Highly Efficient Alkaline Hydrogen Evolution. ACS Appl Mater Interfaces. 2022 Jul 13;14(27):30683-30691. doi: 10.1021/acsami.2c04093. Epub 2022 Jun 28. PMID: 35764915. 15: Lu Y, Zheng X, Liu Y, Zhu J, Li D, Jiang D. Synergistically Coupled CoMo/CoMoP Electrocatalyst for Highly Efficient and Stable Overall Water Splitting. Inorg Chem. 2022 May 30;61(21):8328-8338. doi: 10.1021/acs.inorgchem.2c00923. Epub 2022 May 17. PMID: 35580901. 16: Wang X, Yang L, Xing C, Han X, Du R, He R, Guardia P, Arbiol J, Cabot A. MOF-Derived Ultrathin Cobalt Molybdenum Phosphide Nanosheets for Efficient Electrochemical Overall Water Splitting. Nanomaterials (Basel). 2022 Mar 27;12(7):1098. doi: 10.3390/nano12071098. PMID: 35407217; PMCID: PMC9000688. 17: Shen Y, Jiang Y, Yang Z, Dong J, Yang W, An Q, Mai L. Electronic Structure Modulation in MoO2 /MoP Heterostructure to Induce Fast Electronic/Ionic Diffusion Kinetics for Lithium Storage. Adv Sci (Weinh). 2022 Feb;9(6):e2104504. doi: 10.1002/advs.202104504. Epub 2022 Jan 9. PMID: 35001551; PMCID: PMC8867142. 18: Lou H, Qiu K, Yang G. Janus Mo2P3 Monolayer as an Electrocatalyst for Hydrogen Evolution. ACS Appl Mater Interfaces. 2021 Dec 8;13(48):57422-57429. doi: 10.1021/acsami.1c18759. Epub 2021 Nov 28. PMID: 34841848. 19: Zhang L, Jin Z, Tsubaki N. MoP@MoO3 S-scheme heterojunction in situ construction with phosphating MoO3 for high-efficient photocatalytic hydrogen production. Nanoscale. 2021 Nov 18;13(44):18507-18519. doi: 10.1039/d1nr05452j. PMID: 34730159. 20: Jiang H, Yan L, Zhang S, Zhao Y, Yang X, Wang Y, Shen J, Zhao X, Wang L. Electrochemical Surface Restructuring of Phosphorus-Doped Carbon@MoP Electrocatalysts for Hydrogen Evolution. Nanomicro Lett. 2021 Oct 21;13(1):215. doi: 10.1007/s40820-021-00737-w. PMID: 34676473; PMCID: PMC8531175.