1: Fernandez-Millan P, Autour A, Ennifar E, Westhof E, Ryckelynck M. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI. RNA. 2017 Dec;23(12):1788-1795. doi: 10.1261/rna.063008.117. Epub 2017 Sep 22. PubMed PMID: 28939697; PubMed Central PMCID: PMC5689000.
2: Han KY, Leslie BJ, Fei J, Zhang J, Ha T. Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J Am Chem Soc. 2013 Dec 18;135(50):19033-8. doi: 10.1021/ja411060p. Epub 2013 Dec 10. PubMed PMID: 24286188; PubMed Central PMCID: PMC3908778.
3: Santra K, Geraskin I, Nilsen-Hamilton M, Kraus GA, Petrich JW. Characterization of the Photophysical Behavior of DFHBI Derivatives: Fluorogenic Molecules that Illuminate the Spinach RNA Aptamer. J Phys Chem B. 2019 Mar 21;123(11):2536-2545. doi: 10.1021/acs.jpcb.8b11166. Epub 2019 Mar 12. PubMed PMID: 30807171.
4: Filonov GS, Jaffrey SR. RNA Imaging with Dimeric Broccoli in Live Bacterial and Mammalian Cells. Curr Protoc Chem Biol. 2016 Mar 16;8(1):1-28. doi: 10.1002/9780470559277.ch150174. PubMed PMID: 26995352; PubMed Central PMCID: PMC4829638.
5: Li Z, Guo H, Xu F, Tang W, Duan X. Sensitive monitoring of RNA transcription by optical amplification of cationic conjugated polymers. Talanta. 2019 Oct 1;203:314-321. doi: 10.1016/j.talanta.2019.05.052. Epub 2019 May 12. PubMed PMID: 31202345.
6: Guzmán-Zapata D, Domínguez-Anaya Y, Macedo-Osorio KS, Tovar-Aguilar A, Castrejón-Flores JL, Durán-Figueroa NV, Badillo-Corona JA. mRNA imaging in the chloroplast of Chlamydomonas reinhardtii using the light-up aptamer Spinach. J Biotechnol. 2017 Jun 10;251:186-188. doi: 10.1016/j.jbiotec.2017.03.028. Epub 2017 Mar 28. PubMed PMID: 28359866.
7: Dou J, Vorobieva AA, Sheffler W, Doyle LA, Park H, Bick MJ, Mao B, Foight GW, Lee MY, Gagnon LA, Carter L, Sankaran B, Ovchinnikov S, Marcos E, Huang PS, Vaughan JC, Stoddard BL, Baker D. De novo design of a fluorescence-activating β-barrel. Nature. 2018 Sep;561(7724):485-491. doi: 10.1038/s41586-018-0509-0. Epub 2018 Sep 12. PubMed PMID: 30209393; PubMed Central PMCID: PMC6275156.
8: Zinskie JA, Roig M, Janetopoulos C, Myers KA, Bruist MF. Live-cell imaging of small nucleolar RNA tagged with the broccoli aptamer in yeast. FEMS Yeast Res. 2018 Dec 1;18(8). doi: 10.1093/femsyr/foy093. PubMed PMID: 30137288.
9: Kellenberger CA, Hallberg ZF, Hammond MC. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors. Methods Mol Biol. 2015;1316:87-103. doi: 10.1007/978-1-4939-2730-2_8. PubMed PMID: 25967055.
10: Sunbul M, Jäschke A. SRB-2: a promiscuous rainbow aptamer for live-cell RNA imaging. Nucleic Acids Res. 2018 Oct 12;46(18):e110. doi: 10.1093/nar/gky543. PubMed PMID: 29931157; PubMed Central PMCID: PMC6182184.
11: Bhadra S, Ellington AD. Design, synthesis, and application of Spinach molecular beacons triggered by strand displacement. Methods Enzymol. 2015;550:215-49. doi: 10.1016/bs.mie.2014.10.049. Epub 2015 Jan 5. PubMed PMID: 25605388; PubMed Central PMCID: PMC4429879.
12: Song W, Strack RL, Svensen N, Jaffrey SR. Plug-and-play fluorophores extend the spectral properties of Spinach. J Am Chem Soc. 2014 Jan 29;136(4):1198-201. doi: 10.1021/ja410819x. Epub 2014 Jan 18. PubMed PMID: 24393009; PubMed Central PMCID: PMC3929357.
13: Ketterer S, Fuchs D, Weber W, Meier M. Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach. Nucleic Acids Res. 2015 Oct 30;43(19):9564-72. doi: 10.1093/nar/gkv944. Epub 2015 Sep 22. PubMed PMID: 26400180; PubMed Central PMCID: PMC4627091.
14: Burch BD, Garrido C, Margolis DM. Detection of human immunodeficiency virus RNAs in living cells using Spinach RNA aptamers. Virus Res. 2017 Jan 15;228:141-146. doi: 10.1016/j.virusres.2016.11.031. Epub 2016 Nov 30. PubMed PMID: 27914932; PubMed Central PMCID: PMC5195857.
15: Sharma S, Zaveri A, Visweswariah SS, Krishnan Y. A fluorescent nucleic acid nanodevice quantitatively images elevated cyclic adenosine monophosphate in membrane-bound compartments. Small. 2014 Nov 12;10(21):4276-80. doi: 10.1002/smll.201400833. Epub 2014 Jul 14. PubMed PMID: 25044725.
16: Akter F, Yokobayashi Y. RNA signal amplifier circuit with integrated fluorescence output. ACS Synth Biol. 2015 May 15;4(5):655-8. doi: 10.1021/sb500314r. Epub 2014 Nov 7. PubMed PMID: 25354355; PubMed Central PMCID: PMC4487219.
17: Autour A, Westhof E, Ryckelynck M. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications. Nucleic Acids Res. 2016 Apr 7;44(6):2491-500. doi: 10.1093/nar/gkw083. Epub 2016 Mar 1. PubMed PMID: 26932363; PubMed Central PMCID: PMC4824111.
18: Zhou M, Teng X, Li Y, Deng R, Li J. Cascade Transcription Amplification of RNA Aptamer for Ultrasensitive MicroRNA Detection. Anal Chem. 2019 Apr 16;91(8):5295-5302. doi: 10.1021/acs.analchem.9b00124. Epub 2019 Apr 3. PubMed PMID: 30912425.
19: Kikuchi N, Kolpashchikov DM. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. Chembiochem. 2016 Sep 2;17(17):1589-92. doi: 10.1002/cbic.201600323. Epub 2016 Jul 15. PubMed PMID: 27305425; PubMed Central PMCID: PMC5198575.
20: Zhou Y, Shen S, Lau C, Lu J. A conformational switch-based fluorescent biosensor for homogeneous detection of telomerase activity. Talanta. 2019 Jul 1;199:21-26. doi: 10.1016/j.talanta.2019.02.018. Epub 2019 Feb 4. PubMed PMID: 30952248.