MedKoo Cat#: 555558 | Name: PhTX-433 TFA

Description:

WARNING: This product is for research use only, not for human or veterinary use.

PhTX-433, also known as Philanthotoxin 433, is a polyamine-containing toxin, which blocks NMDA-gated ion channels; originally isolated from the venom of the wasp Philanthus triangulum.

Chemical Structure

PhTX-433 TFA
PhTX-433 TFA
CAS#276684-27-6 (TFA)

Theoretical Analysis

MedKoo Cat#: 555558

Name: PhTX-433 TFA

CAS#: 276684-27-6 (TFA)

Chemical Formula: C29H44F9N5O9

Exact Mass: 0.0000

Molecular Weight: 777.68

Elemental Analysis: C, 44.79; H, 5.70; F, 21.99; N, 9.01; O, 18.52

Price and Availability

Size Price Availability Quantity
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
276684-27-6 (TFA) 115976-91-5 (free base)
Synonym
PhTX-433; PhTX 433; PhTX433; Philanthotoxin 433; Philanthotoxin-433; Philanthotoxin433;
IUPAC/Chemical Name
(S)-N-(1-((4-((3-((3-aminopropyl)amino)propyl)amino)butyl)amino)-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)butyramide tris(2,2,2-trifluoroacetate)
InChi Key
UROZAUWUTBOQNV-YDULTXHLSA-N
InChi Code
InChI=1S/C23H41N5O3.3C2HF3O2/c1-2-7-22(30)28-21(18-19-8-10-20(29)11-9-19)23(31)27-17-4-3-13-25-15-6-16-26-14-5-12-24;3*3-2(4,5)1(6)7/h8-11,21,25-26,29H,2-7,12-18,24H2,1H3,(H,27,31)(H,28,30);3*(H,6,7)/t21-;;;/m0.../s1
SMILES Code
CCCC(N[C@@H](CC1=CC=C(O)C=C1)C(NCCCCNCCCNCCCN)=O)=O.O=C(O)C(F)(F)F.O=C(O)C(F)(F)F.O=C(O)C(F)(F)F
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Philanthotoxins are components of the venom of the Egyptian solitary wasp Philanthus triangulum, commonly known as the European beewolf. Philanthotoxins are polyamine toxins, a group of toxins isolated from the venom of wasps and spiders which immediately but reversibly paralyze their prey.[δ-philanthotoxin, also known as PhTX-433, is the most active philanthotoxin that can be refined from the venom.PhTX-433 functions by blocking excitatory neurotransmitter ion channels, including nicotinic acetylcholine receptors (NAChRs) and ionotropic glutamate receptors (iGluRs). While the IC50 values of philanthotoxins varies between analogues and receptor subunit composition, the IC50 value of PhTX-433 at the iGluR AMPA receptor naturally expressed in locust leg muscle is 18 μM and the IC50 value at rat nAChRs is 1 μM. (from https://en.wikipedia.org/wiki/Philanthotoxin)
Product Data
Biological target:
PhTX-433, also known as Philanthotoxin 433, is a polyamine-containing toxin, which blocks NMDA-gated ion channels.
In vitro activity:
TBD
In vivo activity:
TBD

Preparing Stock Solutions

The following data is based on the product molecular weight 777.68 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
TBD
In vitro protocol:
TBD
In vivo protocol:
TBD
1: Wang T, Frank CA. Eliciting Presynaptic Homeostatic Potentiation at the Drosophila Larval Neuromuscular Junction. Cold Spring Harb Protoc. 2024 Apr 30. doi: 10.1101/pdb.prot108424. Epub ahead of print. PMID: 38688541. 2: Vassileiou C, Kalantzi S, Vachlioti E, Athanassopoulos CM, Koutsakis C, Piperigkou Z, Karamanos N, Stivarou T, Lymberi P, Avgoustakis K, Papaioannou D. New Analogs of Polyamine Toxins from Spiders and Wasps: Liquid Phase Fragment Synthesis and Evaluation of Antiproliferative Activity. Molecules. 2022 Jan 10;27(2):447. doi: 10.3390/molecules27020447. PMID: 35056762; PMCID: PMC8777946. 3: Nair AG, Muttathukunnel P, Müller M. Distinct molecular pathways govern presynaptic homeostatic plasticity. Cell Rep. 2021 Dec 14;37(11):110105. doi: 10.1016/j.celrep.2021.110105. PMID: 34910905; PMCID: PMC8692748. 4: Mrestani A, Pauli M, Kollmannsberger P, Repp F, Kittel RJ, Eilers J, Doose S, Sauer M, Sirén AL, Heckmann M, Paul MM. Active zone compaction correlates with presynaptic homeostatic potentiation. Cell Rep. 2021 Oct 5;37(1):109770. doi: 10.1016/j.celrep.2021.109770. PMID: 34610300. 5: Kachel HS, Franzyk H, Mellor IR. Philanthotoxin Analogues That Selectively Inhibit Ganglionic Nicotinic Acetylcholine Receptors with Exceptional Potency. J Med Chem. 2019 Jul 11;62(13):6214-6222. doi: 10.1021/acs.jmedchem.9b00519. Epub 2019 Jun 24. PMID: 31244109. 6: Jones EV, Bernardinelli Y, Zarruk JG, Chierzi S, Murai KK. SPARC and GluA1-Containing AMPA Receptors Promote Neuronal Health Following CNS Injury. Front Cell Neurosci. 2018 Feb 1;12:22. doi: 10.3389/fncel.2018.00022. PMID: 29449802; PMCID: PMC5799273. 7: Kachel HS, Patel RN, Franzyk H, Mellor IR. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition. Sci Rep. 2016 Nov 30;6:38116. doi: 10.1038/srep38116. PMID: 27901080; PMCID: PMC5128878. 8: Park P, Sanderson TM, Amici M, Choi SL, Bortolotto ZA, Zhuo M, Kaang BK, Collingridge GL. Calcium-Permeable AMPA Receptors Mediate the Induction of the Protein Kinase A-Dependent Component of Long-Term Potentiation in the Hippocampus. J Neurosci. 2016 Jan 13;36(2):622-31. doi: 10.1523/JNEUROSCI.3625-15.2016. PMID: 26758849; PMCID: PMC4710778. 9: McGee TP, Bats C, Farrant M, Cull-Candy SG. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function. J Neurosci. 2015 Dec 9;35(49):16171-9. doi: 10.1523/JNEUROSCI.2152-15.2015. PMID: 26658868; PMCID: PMC4682783. 10: Franzyk H, Grzeskowiak JW, Tikhonov DB, Jaroszewski JW, Mellor IR. The effects of conformational constraints in the polyamine moiety of philanthotoxins on AMPAR inhibition. ChemMedChem. 2014 Aug;9(8):1725-31. doi: 10.1002/cmdc.201402109. Epub 2014 Jul 8. PMID: 25044789. 11: Mattison HA, Bagal AA, Mohammadi M, Pulimood NS, Reich CG, Alger BE, Kao JP, Thompson SM. Evidence of calcium-permeable AMPA receptors in dendritic spines of CA1 pyramidal neurons. J Neurophysiol. 2014 Jul 15;112(2):263-75. doi: 10.1152/jn.00578.2013. Epub 2014 Apr 23. PMID: 24760782; PMCID: PMC4064414. 12: Younger MA, Müller M, Tong A, Pym EC, Davis GW. A presynaptic ENaC channel drives homeostatic plasticity. Neuron. 2013 Sep 18;79(6):1183-96. doi: 10.1016/j.neuron.2013.06.048. Epub 2013 Aug 22. PMID: 23973209; PMCID: PMC3784986. 13: Bellone C, Mameli M, Lüscher C. In utero exposure to cocaine delays postnatal synaptic maturation of glutamatergic transmission in the VTA. Nat Neurosci. 2011 Oct 2;14(11):1439-46. doi: 10.1038/nn.2930. PMID: 21964489. 14: Sara Y, Bal M, Adachi M, Monteggia LM, Kavalali ET. Use-dependent AMPA receptor block reveals segregation of spontaneous and evoked glutamatergic neurotransmission. J Neurosci. 2011 Apr 6;31(14):5378-82. doi: 10.1523/JNEUROSCI.5234-10.2011. PMID: 21471372; PMCID: PMC3086544. 15: Jackson AC, Nicoll RA. Stargazin (TARP gamma-2) is required for compartment- specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells. J Neurosci. 2011 Mar 16;31(11):3939-52. doi: 10.1523/JNEUROSCI.5134-10.2011. PMID: 21411637; PMCID: PMC3104604. 16: Müller M, Pym EC, Tong A, Davis GW. Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release. Neuron. 2011 Feb 24;69(4):749-62. doi: 10.1016/j.neuron.2011.01.025. PMID: 21338884; PMCID: PMC3059509. 17: Frølund S, Bella A, Kristensen AS, Ziegler HL, Witt M, Olsen CA, Strømgaard K, Franzyk H, Jaroszewski JW. Assessment of structurally diverse philanthotoxin analogues for inhibitory activity on ionotropic glutamate receptor subtypes: discovery of nanomolar, nonselective, and use-dependent antagonists. J Med Chem. 2010 Oct 28;53(20):7441-51. doi: 10.1021/jm100886h. PMID: 20873775. 18: He K, Song L, Cummings LW, Goldman J, Huganir RL, Lee HK. Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20033-8. doi: 10.1073/pnas.0910338106. Epub 2009 Nov 5. PMID: 19892736; PMCID: PMC2785287. 19: Frade JG, Barbosa RM, Laranjinha J. Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices. Hippocampus. 2009 Jul;19(7):603-11. doi: 10.1002/hipo.20536. PMID: 19115375. 20: Galván EJ, Calixto E, Barrionuevo G. Bidirectional Hebbian plasticity at hippocampal mossy fiber synapses on CA3 interneurons. J Neurosci. 2008 Dec 24;28(52):14042-55. doi: 10.1523/JNEUROSCI.4848-08.2008. PMID: 19109487; PMCID: PMC2660276.