MedKoo Cat#: 581899 | Name: 5-Hydroxydecanoate sodium
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

5-Hydroxydecanoic acid is a potassium channel antagonist which blocks the postischemic effects of the potassium channel activator cromakalim.

Chemical Structure

5-Hydroxydecanoate sodium
5-Hydroxydecanoate sodium
CAS#71186-53-3 (sodium)

Theoretical Analysis

MedKoo Cat#: 581899

Name: 5-Hydroxydecanoate sodium

CAS#: 71186-53-3 (sodium)

Chemical Formula: C10H19NaO3

Exact Mass: 188.1412

Molecular Weight: 210.25

Elemental Analysis: C, 57.13; H, 9.11; Na, 10.93; O, 22.83

Price and Availability

Size Price Availability Quantity
50mg USD 250.00 2 Weeks
100mg USD 400.00 2 Weeks
250mg USD 750.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
71186-53-3 (sodium) 624-00-0 (free acid)
Synonym
5-Hydroxydecanoic acid; 5-Hydroxydecanoate; Sodium 5-hydroxydecanoate. 5-Hydroxydecanoic acid sodium salt; 5-HD;
IUPAC/Chemical Name
Decanoic acid, 5-hydroxy-, sodium
InChi Key
YNAGNECWEKMWRM-UHFFFAOYSA-M
InChi Code
InChI=1S/C10H20O3.Na/c1-2-3-4-6-9(11)7-5-8-10(12)13;/h9,11H,2-8H2,1H3,(H,12,13);/q;+1/p-1
SMILES Code
CCCCCC(O)CCCC([O-])=O.[Na+]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 210.25 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Krajewska M, Szewczyk A, Kulawiak B, Koprowski P. Pharmacological Characterization of a Recombinant Mitochondrial ROMK2 Potassium Channel Expressed in Bacteria and Reconstituted in Planar Lipid Bilayers. Membranes (Basel). 2023 Mar 21;13(3):360. doi: 10.3390/membranes13030360. PMID: 36984747; PMCID: PMC10052516. 2: Zeng Q, Zhang LD, Chen QF, Wang W, Huang Z, Huang DL, Wang F, Yang F, Nong J, Yang J, Zeng J. Effects of Mitochondrial ATP-Sensitive Potassium Channel in Rats with Acute Myocardial Infarction and Its Association with the AKT/mTOR Pathway. Anatol J Cardiol. 2023 Feb;27(2):88-99. doi: 10.14744/AnatolJCardiol.2022.2406. PMID: 36747448; PMCID: PMC9900408. 3: Maslov LN, Sementsov AS, Naryzhnaya NV, Derkachev IA, Fu F, Gusakova SV, Sarybaev A. The Role of Mitochondrial KATP Channels in the Infarct- Reducing Effect of Normobaric Hypoxia. Bull Exp Biol Med. 2022 Dec;174(2):190-193. doi: 10.1007/s10517-023-05671-y. Epub 2023 Jan 5. PMID: 36602604. 4: Li W, Lee SH, Kim SH. Carbon monoxide releasing molecule-2 suppresses stretch-activated atrial natriuretic peptide secretion by activating large- conductance calcium-activated potassium channels. Korean J Physiol Pharmacol. 2022 Mar 1;26(2):125-133. doi: 10.4196/kjpp.2022.26.2.125. PMID: 35203062; PMCID: PMC8890946. 5: Han Y, Li C, Zhang P, Yang X, Min J, Wu Q, Xie Y, Jin D, Wang Z, Shao F, Quan H. Protective effects of 5(S)-5-carboxystrictosidine on myocardial ischemia- reperfusion injury through activation of mitochondrial KATP channels. Eur J Pharmacol. 2022 Apr 5;920:174811. doi: 10.1016/j.ejphar.2022.174811. Epub 2022 Feb 17. PMID: 35182546. 6: Arni S, Maeyashiki T, Latshang T, Opitz I, Inci I. Ex Vivo Lung Perfusion with K(ATP) Channel Modulators Antagonize Ischemia Reperfusion Injury. Cells. 2021 Sep 3;10(9):2296. doi: 10.3390/cells10092296. PMID: 34571948; PMCID: PMC8472464. 7: Country MW, Jonz MG. Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus). J Exp Biol. 2021 Sep 15;224(18):jeb242634. doi: 10.1242/jeb.242634. Epub 2021 Sep 22. PMID: 34402511. 8: Bai S, Wang X, Wu H, Chen T, Li X, Zhang L, Li X, Er L, Du R. Cardioprotective effect of anisodamine against ischemia/reperfusion injury through the mitochondrial ATP-sensitive potassium channel. Eur J Pharmacol. 2021 Jun 15;901:174095. doi: 10.1016/j.ejphar.2021.174095. Epub 2021 Apr 20. PMID: 33862063. 9: Liu D, Sun WP, Chen JW, Jiang Y, Xue R, Wang LH, Murao K, Zhang GX. Autophagy contributes to angiotensin II induced dysfunction of HUVECs. Clin Exp Hypertens. 2021 Jul 4;43(5):462-473. doi: 10.1080/10641963.2021.1901110. Epub 2021 Mar 29. PMID: 33775188. 10: Ning K, Jiang L, Hu T, Wang X, Liu A, Bao Y. ATP-Sensitive Potassium Channels Mediate the Cardioprotective Effect of Panax notoginseng Saponins against Myocardial Ischaemia-Reperfusion Injury and Inflammatory Reaction. Biomed Res Int. 2020 Oct 20;2020:3039184. doi: 10.1155/2020/3039184. PMID: 33134375; PMCID: PMC7593753. 11: Akopova O, Kolchinskaya L, Nosar V, Mankovska I, Sagach V. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale. BMC Mol Cell Biol. 2020 Apr 19;21(1):31. doi: 10.1186/s12860-020-00275-0. PMID: 32306897; PMCID: PMC7168813. 12: Li J, Zhou W, Chen W, Wang H, Zhang Y, Yu T. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post‑conditioning. Mol Med Rep. 2020 Mar;21(3):1527-1536. doi: 10.3892/mmr.2020.10966. Epub 2020 Jan 28. PMID: 32016463; PMCID: PMC7003038. 13: Laskowski M, Augustynek B, Bednarczyk P, Żochowska M, Kalisz J, O'Rourke B, Szewczyk A, Kulawiak B. Single-Channel Properties of the ROMK-Pore-Forming Subunit of the Mitochondrial ATP-Sensitive Potassium Channel. Int J Mol Sci. 2019 Oct 25;20(21):5323. doi: 10.3390/ijms20215323. PMID: 31731540; PMCID: PMC6862428. 14: Choi HG, Kim JW, Choi H, Kang KS, Shim SH. New Hydroxydecanoic Acid Derivatives Produced by an Dndophytic Yeast Aureobasidium pullulans AJF1 from Flowers of Aconitum carmichaeli. Molecules. 2019 Nov 8;24(22):4051. doi: 10.3390/molecules24224051. PMID: 31717454; PMCID: PMC6891652. 15: Bulion VV, Selina EN, Krylova IB. Zashchitnoe deĭstvie uridina na metabolicheskie protsessy v miokarde krys pri ego reperfuzionnom povrezhdenii [Protective effect of uridine on metabolic processes in rat myocardum during its ischemia/reperfusion damage]. Biomed Khim. 2019 Aug;65(5):398-402. Russian. doi: 10.18097/PBMC20196505398. PMID: 31666412. 16: Wang J, Sun J, Qiao S, Li H, Che T, Wang C, An J. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels. Mol Med Rep. 2019 Nov;20(5):4383-4390. doi: 10.3892/mmr.2019.10658. Epub 2019 Sep 9. PMID: 31545457. 17: Portal L, Morin D, Motterlini R, Ghaleh B, Pons S. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. Eur J Pharmacol. 2019 Nov 5;862:172636. doi: 10.1016/j.ejphar.2019.172636. Epub 2019 Sep 3. PMID: 31491405. 18: Rozova EV, Mankovskaya IN, Belosludtseva NV, Khmil NV, Mironova GD. Uridine as a protector against hypoxia-induced lung injury. Sci Rep. 2019 Jul 1;9(1):9418. doi: 10.1038/s41598-019-45979-2. PMID: 31263219; PMCID: PMC6602925. 19: Mironova GD, Rozova EV, Belosludtseva NV, Man'kovskaya IN. Dynamic Restructuring of the Myocardial Mitochondria in Response to Uridine Modulation of the Activity of Mitochondrial ATP-Dependent Potassium Channel under Conditions of Acute Hypoxic Hypoxia. Bull Exp Biol Med. 2019 Apr;166(6):806-810. doi: 10.1007/s10517-019-04445-9. Epub 2019 Apr 24. PMID: 31020578. 20: Yokoyama S, Nakagawa I, Ogawa Y, Morisaki Y, Motoyama Y, Park YS, Saito Y, Nakase H. Ischemic postconditioning prevents surge of presynaptic glutamate release by activating mitochondrial ATP-dependent potassium channels in the mouse hippocampus. PLoS One. 2019 Apr 12;14(4):e0215104. doi: 10.1371/journal.pone.0215104. PMID: 30978206; PMCID: PMC6461229.