1: Krajewska M, Szewczyk A, Kulawiak B, Koprowski P. Pharmacological Characterization of a Recombinant Mitochondrial ROMK2 Potassium Channel Expressed in Bacteria and Reconstituted in Planar Lipid Bilayers. Membranes (Basel). 2023 Mar 21;13(3):360. doi: 10.3390/membranes13030360. PMID: 36984747; PMCID: PMC10052516.
2: Zeng Q, Zhang LD, Chen QF, Wang W, Huang Z, Huang DL, Wang F, Yang F, Nong J, Yang J, Zeng J. Effects of Mitochondrial ATP-Sensitive Potassium Channel in Rats with Acute Myocardial Infarction and Its Association with the AKT/mTOR Pathway. Anatol J Cardiol. 2023 Feb;27(2):88-99. doi: 10.14744/AnatolJCardiol.2022.2406. PMID: 36747448; PMCID: PMC9900408.
3: Maslov LN, Sementsov AS, Naryzhnaya NV, Derkachev IA, Fu F, Gusakova SV, Sarybaev A. The Role of Mitochondrial KATP Channels in the Infarct- Reducing Effect of Normobaric Hypoxia. Bull Exp Biol Med. 2022 Dec;174(2):190-193. doi: 10.1007/s10517-023-05671-y. Epub 2023 Jan 5. PMID: 36602604.
4: Li W, Lee SH, Kim SH. Carbon monoxide releasing molecule-2 suppresses stretch-activated atrial natriuretic peptide secretion by activating large- conductance calcium-activated potassium channels. Korean J Physiol Pharmacol. 2022 Mar 1;26(2):125-133. doi: 10.4196/kjpp.2022.26.2.125. PMID: 35203062; PMCID: PMC8890946.
5: Han Y, Li C, Zhang P, Yang X, Min J, Wu Q, Xie Y, Jin D, Wang Z, Shao F, Quan H. Protective effects of 5(S)-5-carboxystrictosidine on myocardial ischemia- reperfusion injury through activation of mitochondrial KATP channels. Eur J Pharmacol. 2022 Apr 5;920:174811. doi: 10.1016/j.ejphar.2022.174811. Epub 2022 Feb 17. PMID: 35182546.
6: Arni S, Maeyashiki T, Latshang T, Opitz I, Inci I. Ex Vivo Lung Perfusion with K(ATP) Channel Modulators Antagonize Ischemia Reperfusion Injury. Cells. 2021 Sep 3;10(9):2296. doi: 10.3390/cells10092296. PMID: 34571948; PMCID: PMC8472464.
7: Country MW, Jonz MG. Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus). J Exp Biol. 2021 Sep 15;224(18):jeb242634. doi: 10.1242/jeb.242634. Epub 2021 Sep 22. PMID: 34402511.
8: Bai S, Wang X, Wu H, Chen T, Li X, Zhang L, Li X, Er L, Du R. Cardioprotective effect of anisodamine against ischemia/reperfusion injury through the mitochondrial ATP-sensitive potassium channel. Eur J Pharmacol. 2021 Jun 15;901:174095. doi: 10.1016/j.ejphar.2021.174095. Epub 2021 Apr 20. PMID: 33862063.
9: Liu D, Sun WP, Chen JW, Jiang Y, Xue R, Wang LH, Murao K, Zhang GX. Autophagy contributes to angiotensin II induced dysfunction of HUVECs. Clin Exp Hypertens. 2021 Jul 4;43(5):462-473. doi: 10.1080/10641963.2021.1901110. Epub 2021 Mar 29. PMID: 33775188.
10: Ning K, Jiang L, Hu T, Wang X, Liu A, Bao Y. ATP-Sensitive Potassium Channels Mediate the Cardioprotective Effect of Panax notoginseng Saponins against Myocardial Ischaemia-Reperfusion Injury and Inflammatory Reaction. Biomed Res Int. 2020 Oct 20;2020:3039184. doi: 10.1155/2020/3039184. PMID: 33134375; PMCID: PMC7593753.
11: Akopova O, Kolchinskaya L, Nosar V, Mankovska I, Sagach V. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale. BMC Mol Cell Biol. 2020 Apr 19;21(1):31. doi: 10.1186/s12860-020-00275-0. PMID: 32306897; PMCID: PMC7168813.
12: Li J, Zhou W, Chen W, Wang H, Zhang Y, Yu T. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post‑conditioning. Mol Med Rep. 2020 Mar;21(3):1527-1536. doi: 10.3892/mmr.2020.10966. Epub 2020 Jan 28. PMID: 32016463; PMCID: PMC7003038.
13: Laskowski M, Augustynek B, Bednarczyk P, Żochowska M, Kalisz J, O'Rourke B, Szewczyk A, Kulawiak B. Single-Channel Properties of the ROMK-Pore-Forming Subunit of the Mitochondrial ATP-Sensitive Potassium Channel. Int J Mol Sci. 2019 Oct 25;20(21):5323. doi: 10.3390/ijms20215323. PMID: 31731540; PMCID: PMC6862428.
14: Choi HG, Kim JW, Choi H, Kang KS, Shim SH. New Hydroxydecanoic Acid Derivatives Produced by an Dndophytic Yeast Aureobasidium pullulans AJF1 from Flowers of Aconitum carmichaeli. Molecules. 2019 Nov 8;24(22):4051. doi: 10.3390/molecules24224051. PMID: 31717454; PMCID: PMC6891652.
15: Bulion VV, Selina EN, Krylova IB. Zashchitnoe deĭstvie uridina na metabolicheskie protsessy v miokarde krys pri ego reperfuzionnom povrezhdenii [Protective effect of uridine on metabolic processes in rat myocardum during its ischemia/reperfusion damage]. Biomed Khim. 2019 Aug;65(5):398-402. Russian. doi: 10.18097/PBMC20196505398. PMID: 31666412.
16: Wang J, Sun J, Qiao S, Li H, Che T, Wang C, An J. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels. Mol Med Rep. 2019 Nov;20(5):4383-4390. doi: 10.3892/mmr.2019.10658. Epub 2019 Sep 9. PMID: 31545457.
17: Portal L, Morin D, Motterlini R, Ghaleh B, Pons S. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. Eur J Pharmacol. 2019 Nov 5;862:172636. doi: 10.1016/j.ejphar.2019.172636. Epub 2019 Sep 3. PMID: 31491405.
18: Rozova EV, Mankovskaya IN, Belosludtseva NV, Khmil NV, Mironova GD. Uridine as a protector against hypoxia-induced lung injury. Sci Rep. 2019 Jul 1;9(1):9418. doi: 10.1038/s41598-019-45979-2. PMID: 31263219; PMCID: PMC6602925.
19: Mironova GD, Rozova EV, Belosludtseva NV, Man'kovskaya IN. Dynamic Restructuring of the Myocardial Mitochondria in Response to Uridine Modulation of the Activity of Mitochondrial ATP-Dependent Potassium Channel under Conditions of Acute Hypoxic Hypoxia. Bull Exp Biol Med. 2019 Apr;166(6):806-810. doi: 10.1007/s10517-019-04445-9. Epub 2019 Apr 24. PMID: 31020578.
20: Yokoyama S, Nakagawa I, Ogawa Y, Morisaki Y, Motoyama Y, Park YS, Saito Y, Nakase H. Ischemic postconditioning prevents surge of presynaptic glutamate release by activating mitochondrial ATP-dependent potassium channels in the mouse hippocampus. PLoS One. 2019 Apr 12;14(4):e0215104. doi: 10.1371/journal.pone.0215104. PMID: 30978206; PMCID: PMC6461229.