MedKoo Cat#: 555350 | Name: DLin-KC2-DMA
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

DLin-KC2-DMA is a cationic lipid used in lipid nanoparticle (LNP) formulations for delivering RNA-based therapeutics. It has demonstrated high transfection efficiency and potent in vivo gene silencing activity, particularly in hepatic delivery applications. Studies have shown that DLin-KC2-DMA exhibits optimal pKa (~6.7), facilitating endosomal escape and efficient intracellular release of nucleic acids. Compared to earlier ionizable lipids like DLin-DMA, it provides improved gene knockdown potency with reduced toxicity. In siRNA delivery models, DLin-KC2-DMA-based LNPs achieved significant target mRNA reduction at low doses (ED50 in the 0.01–0.1 mg/kg range), making it a key component in advanced LNP platforms for RNA therapeutics.

Chemical Structure

DLin-KC2-DMA
DLin-KC2-DMA
CAS#1190197-97-7

Theoretical Analysis

MedKoo Cat#: 555350

Name: DLin-KC2-DMA

CAS#: 1190197-97-7

Chemical Formula: C43H79NO2

Exact Mass: 641.6111

Molecular Weight: 642.11

Elemental Analysis: C, 80.43; H, 12.40; N, 2.18; O, 4.98

Price and Availability

Size Price Availability Quantity
5mg USD 90.00 Ready to ship
10mg USD 150.00 Ready to ship
25mg USD 285.00 Ready to ship
50mg USD 450.00 Ready to ship
100mg USD 750.00 Ready to ship
200mg USD 1,250.00 Ready to ship
500mg USD 2,450.00 Ready to ship
1g USD 4,350.00 Ready to ship
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
1224373-32-3 (S-isomer) 1224373-36-7 (R-isomer) 1190197-97-7
Synonym
DLin-KC2-DMA; D-Lin-KC2-DMA; KC2;
IUPAC/Chemical Name
2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane
InChi Key
LRFJOIPOPUJUMI-KWXKLSQISA-N
InChi Code
InChI=1S/C43H79NO2/c1-5-7-9-11-13-15-17-19-21-23-25-27-29-31-33-35-38-43(45-41-42(46-43)37-40-44(3)4)39-36-34-32-30-28-26-24-22-20-18-16-14-12-10-8-6-2/h13-16,19-22,42H,5-12,17-18,23-41H2,1-4H3/b15-13-,16-14-,21-19-,22-20-
SMILES Code
CN(CCC1OC(CCCCCCCC/C=C\C/C=C\CCCCC)(CCCCCCCC/C=C\C/C=C\CCCCC)OC1)C
Appearance
Colorless to light yellow liquid
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO and ethanol
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in ethanol or DMSO.
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Lipid nanoparticles (LNPs) containing distearoylphosphatidlycholine (DSPC), and ionizable amino-lipids such as dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA) are potent siRNA delivery vehicles in vivo
Biological target:
DLin-KC2-DMA is a cationic lipid for siRNA delivery.
In vitro activity:
In vitro screening studies using a panel of cationic lipids showed that LNPs (liquid nanoparticles) containing the ionizable cationic lipid 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLin-KC2-DMA) exhibited the most potent AR (androgen receptor) silencing effects in LNCaP cells. This is attributed to an optimized ability of DLin-KC2-DMA-containing LNP to be taken up into cells and to release the siRNA into the cell cytoplasm following endocytotic uptake. DLin-KC2-DMA LNPs were also effective in silencing the AR in a wild-type AR expressing cell line, LAPC-4, and a variant AR expressing cell line, CWR22Rv1. Reference: Int J Cancer. 2012 Sep 1;131(5):E781-90. https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.27361
In vivo activity:
The ability of lipid nanoparticle (LNP) formulations of small-interfering RNA (siRNA) to silence AR (androgen receptor) was investigated in LNCaP xenograft tumors following intravenous (i.v.) injection. It was demonstrated that LNP AR-siRNA systems containing DLin-KC2-DMA can silence AR gene expression in distal LNCaP xenograft tumors and decrease serum PSA levels following i.v. injection. Reference: Int J Cancer. 2012 Sep 1;131(5):E781-90. https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.27361
Solvent mg/mL mM
Solubility
DMSO 5.0 7.79
Ethanol 50.0 77.87
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 642.11 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Lee JB, Zhang K, Tam YY, Tam YK, Belliveau NM, Sung VY, Lin PJ, LeBlanc E, Ciufolini MA, Rennie PS, Cullis PR. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo. Int J Cancer. 2012 Sep 1;131(5):E781-90. doi: 10.1002/ijc.27361. Epub 2012 Jan 3. PMID: 22095615.
In vitro protocol:
1. Lee JB, Zhang K, Tam YY, Tam YK, Belliveau NM, Sung VY, Lin PJ, LeBlanc E, Ciufolini MA, Rennie PS, Cullis PR. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo. Int J Cancer. 2012 Sep 1;131(5):E781-90. doi: 10.1002/ijc.27361. Epub 2012 Jan 3. PMID: 22095615.
In vivo protocol:
1. Lee JB, Zhang K, Tam YY, Tam YK, Belliveau NM, Sung VY, Lin PJ, LeBlanc E, Ciufolini MA, Rennie PS, Cullis PR. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo. Int J Cancer. 2012 Sep 1;131(5):E781-90. doi: 10.1002/ijc.27361. Epub 2012 Jan 3. PMID: 22095615.
1: Park S, Choi YK, Kim S, Lee J, Im W. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids. bioRxiv [Preprint]. 2021 Jun 23:2021.06.23.449544. doi: 10.1101/2021.06.23.449544. PMID: 34189527; PMCID: PMC8240680. 2: Ramezanpour M , Schmidt ML , Bodnariuc I , Kulkarni JA , Leung SSW , Cullis PR , Thewalt JL , Tieleman DP . Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function. Nanoscale. 2019 Aug 1;11(30):14141-14146. doi: 10.1039/c9nr02297j. PMID: 31334542. 3: Kulkarni JA, Myhre JL, Chen S, Tam YYC, Danescu A, Richman JM, Cullis PR. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine. 2017 May;13(4):1377-1387. doi: 10.1016/j.nano.2016.12.014. Epub 2016 Dec 28. PMID: 28038954. 4: Kang MR, Yang G, Place RF, Charisse K, Epstein-Barash H, Manoharan M, Li LC. Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Cancer Res. 2012 Oct 1;72(19):5069-79. doi: 10.1158/0008-5472.CAN-12-1871. Epub 2012 Aug 6. PMID: 22869584. 5: Lee JB, Zhang K, Tam YY, Tam YK, Belliveau NM, Sung VY, Lin PJ, LeBlanc E, Ciufolini MA, Rennie PS, Cullis PR. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo. Int J Cancer. 2012 Sep 1;131(5):E781-90. doi: 10.1002/ijc.27361. Epub 2012 Jan 3. PMID: 22095615. 6: Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DW, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen Q, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010 Feb;28(2):172-6. doi: 10.1038/nbt.1602. Epub 2010 Jan 17. PMID: 20081866.
1. Zhang W, Pfeifle A, Lansdell C, Frahm G, Cecillon J, Tamming L, Gravel C, Gao J, Thulasi Raman SN, Wang L, Sauve S, Rosu-Myles M, Li X, Johnston MJW. The Expression Kinetics and Immunogenicity of Lipid Nanoparticles Delivering Plasmid DNA and mRNA in Mice. Vaccines (Basel). 2023 Oct 11;11(10):1580. doi: 10.3390/vaccines11101580. PMID: 37896985; PMCID: PMC10610642. 2. Tamming L, Duque D, Bavananthasivam J, Tran A, Lansdell C, Frahm G, Wu J, Fekete EEF, Creskey M, Thulasi Raman SN, Laryea E, Zhang W, Pfeifle A, Gravel C, Stalker A, Hashem AM, Chen W, Stuible M, Durocher Y, Safronetz D, Cao J, Wang L, Sauve S, Rosu-Myles M, Zhang X, Johnston MJW, Li X. Lipid nanoparticle encapsulation of a Delta spike-CD40L DNA vaccine improves effectiveness against Omicron challenge in Syrian hamsters. Mol Ther Methods Clin Dev. 2024 Aug 19;32(3):101325. doi: 10.1016/j.omtm.2024.101325. Erratum in: Mol Ther Methods Clin Dev. 2024 Dec 11;33(1):101388. doi: 10.1016/j.omtm.2024.101388. PMID: 39309757; PMCID: PMC11416279. 3. Pfeifle A, Thulasi Raman SN, Lansdell C, Zhang W, Tamming L, Cecillon J, Laryea E, Patel D, Wu J, Gravel C, Frahm G, Gao J, Chen W, Chaconas G, Sauve S, Rosu-Myles M, Wang L, Johnston MJW, Li X. DNA lipid nanoparticle vaccine targeting outer surface protein C affords protection against homologous Borrelia burgdorferi needle challenge in mice. Front Immunol. 2023 Mar 16;14:1020134. doi: 10.3389/fimmu.2023.1020134. PMID: 37006299; PMCID: PMC10060826.