MedKoo Cat#: 564056 | Name: Pyr10
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Pyr10 is a selective inhibitor of the transient receptor potential channel TRPC3. Pyr10 significantly reduced bladder excitability in DO and control rats

Chemical Structure

Pyr10
Pyr10
CAS#1315323-00-2

Theoretical Analysis

MedKoo Cat#: 564056

Name: Pyr10

CAS#: 1315323-00-2

Chemical Formula: C18H13F6N3O2S

Exact Mass: 449.0633

Molecular Weight: 449.37

Elemental Analysis: C, 48.11; H, 2.92; F, 25.37; N, 9.35; O, 7.12; S, 7.13

Price and Availability

Size Price Availability Quantity
5mg USD 350.00
25mg USD 750.00
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Pyr10; Pyr-10; Pyr 10
IUPAC/Chemical Name
N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-benzenesulfonamide
InChi Key
CVALMMCIOLXHDM-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H13F6N3O2S/c1-11-2-8-14(9-3-11)30(28,29)26-12-4-6-13(7-5-12)27-16(18(22,23)24)10-15(25-27)17(19,20)21/h2-10,26H,1H3
SMILES Code
O=S(C1=CC=C(C)C=C1)(NC2=CC=C(N3N=C(C(F)(F)F)C=C3C(F)(F)F)C=C2)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in ethanol
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Pyr10 is a TRPC3 channel inhibitor (IC50 = 0.72 μM for TRPC3 mediated calcium entry in vitro), which displays approximately 18-fold selectivity for TRPC3-mediated receptor operated calcium entry (ROCE) over STIM1/Orai1-mediated store operated calcium entry (SOCE). Pyr10 inhibits NFATc3 activation and inhibits proliferation of rat ventricular cardiac fibroblasts.
In vitro activity:
The in vitro activity of pyr10, a pyrazole derivative, was investigated in this study using cloned human TWIK-related K+ channels (TREKs) and TWIK-related acid-sensitive K+ channel 2 (TASK-2) channels expressed in HEK293T cells. Pyr10 exhibited subtype-specific inhibition, primarily targeting ITREK1, while sparing ITREK2. Pyr10 displayed inhibitory effects on ITASK2. At a concentration of 100μM, pyr10 resulted in a 70.9±3.1% reduction in ITASK2 current. Reference: Eur J Pharmacol. 2016 Nov 15;791:686-695. https://pubmed.ncbi.nlm.nih.gov/27568832/
In vivo activity:
PYR10 significantly reduced bladder excitability in detrusor overactive and control rats, but the decrease of the bladder excitability of detrusor overactivity rats was more obvious. PYR10 significantly reduced the intracellular calcium concentration in smooth muscle cells in detrusor overactivity and control rats. Reference: Lab Invest. 2022 Jan;102(1):48-56. https://pubmed.ncbi.nlm.nih.gov/34497367/
Solvent mg/mL mM
Solubility
Ethanol 44.9 100.00
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 449.37 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Kim HJ, Woo J, Nam Y, Nam JH, Kim WK. Differential modulation of TWIK-related K+ channel (TREK) and TWIK-related acid-sensitive K+ channel 2 (TASK2) activity by pyrazole compounds. Eur J Pharmacol. 2016 Nov 15;791:686-695. doi: 10.1016/j.ejphar.2016.08.030. Epub 2016 Aug 26. PMID: 27568832. 2. Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol. 2012 Dec;167(8):1712-22. doi: 10.1111/j.1476-5381.2012.02126.x. PMID: 22862290; PMCID: PMC3525873. 3. Zhu J, Fan Y, Lu Q, Yang Y, Li H, Liu X, Zhang H, Sun B, Liu Q, Zhao J, Yang Z, Li L, Feng H, Xu J. Increased transient receptor potential canonical 3 activity is involved in the pathogenesis of detrusor overactivity by dynamic interaction with Na+/Ca2+ exchanger 1. Lab Invest. 2022 Jan;102(1):48-56. doi: 10.1038/s41374-021-00665-8. Epub 2021 Sep 8. PMID: 34497367. 4. Saliba Y, Jebara V, Hajal J, Maroun R, Chacar S, Smayra V, Abramowitz J, Birnbaumer L, Farès N. Transient Receptor Potential Canonical 3 and Nuclear Factor of Activated T Cells C3 Signaling Pathway Critically Regulates Myocardial Fibrosis. Antioxid Redox Signal. 2019 Jun 1;30(16):1851-1879. doi: 10.1089/ars.2018.7545. Epub 2018 Nov 29. PMID: 30318928; PMCID: PMC6486676.
In vitro protocol:
1. Kim HJ, Woo J, Nam Y, Nam JH, Kim WK. Differential modulation of TWIK-related K+ channel (TREK) and TWIK-related acid-sensitive K+ channel 2 (TASK2) activity by pyrazole compounds. Eur J Pharmacol. 2016 Nov 15;791:686-695. doi: 10.1016/j.ejphar.2016.08.030. Epub 2016 Aug 26. PMID: 27568832. 2. Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol. 2012 Dec;167(8):1712-22. doi: 10.1111/j.1476-5381.2012.02126.x. PMID: 22862290; PMCID: PMC3525873.
In vivo protocol:
1. Zhu J, Fan Y, Lu Q, Yang Y, Li H, Liu X, Zhang H, Sun B, Liu Q, Zhao J, Yang Z, Li L, Feng H, Xu J. Increased transient receptor potential canonical 3 activity is involved in the pathogenesis of detrusor overactivity by dynamic interaction with Na+/Ca2+ exchanger 1. Lab Invest. 2022 Jan;102(1):48-56. doi: 10.1038/s41374-021-00665-8. Epub 2021 Sep 8. PMID: 34497367. 2. Saliba Y, Jebara V, Hajal J, Maroun R, Chacar S, Smayra V, Abramowitz J, Birnbaumer L, Farès N. Transient Receptor Potential Canonical 3 and Nuclear Factor of Activated T Cells C3 Signaling Pathway Critically Regulates Myocardial Fibrosis. Antioxid Redox Signal. 2019 Jun 1;30(16):1851-1879. doi: 10.1089/ars.2018.7545. Epub 2018 Nov 29. PMID: 30318928; PMCID: PMC6486676.
1: Gombedza FC, Shin S, Sadiua J, Stackhouse GB, Bandyopadhyay BC. The Rise in Tubular pH during Hypercalciuria Exacerbates Calcium Stone Formation. Int J Mol Sci. 2024 Apr 27;25(9):4787. doi: 10.3390/ijms25094787. PMID: 38732005; PMCID: PMC11084476. 2: Allam S, Krüger D, Michel K, Schnabl K, Klingenspor M, Schemann M, Annaházi A. Mechanisms involved in the muscle relaxing effects of STW 5 in guinea pig stomach. Neurogastroenterol Motil. 2024 Feb 11:e14761. doi: 10.1111/nmo.14761. Epub ahead of print. PMID: 38342975. 3: Kim SA, Jang JH, Kim W, Lee PR, Kim YH, Vang H, Lee K, Oh SB. Mitochondrial Reactive Oxygen Species Elicit Acute and Chronic Itch via Transient Receptor Potential Canonical 3 Activation in Mice. Neurosci Bull. 2022 Apr;38(4):373-385. doi: 10.1007/s12264-022-00837-6. Epub 2022 Mar 16. PMID: 35294713; PMCID: PMC9068852. 4: Creisméas A, Gazaille C, Bourdon A, Lallemand MA, François V, Allais M, Ledevin M, Larcher T, Toumaniantz G, Lafoux A, Huchet C, Anegon I, Adjali O, Le Guiner C, Fraysse B. TRPC3, but not TRPC1, as a good therapeutic target for standalone or complementary treatment of DMD. J Transl Med. 2021 Dec 20;19(1):519. doi: 10.1186/s12967-021-03191-9. PMID: 34930315; PMCID: PMC8686557. 5: Zhu J, Fan Y, Lu Q, Yang Y, Li H, Liu X, Zhang H, Sun B, Liu Q, Zhao J, Yang Z, Li L, Feng H, Xu J. Increased transient receptor potential canonical 3 activity is involved in the pathogenesis of detrusor overactivity by dynamic interaction with Na+/Ca2+ exchanger 1. Lab Invest. 2022 Jan;102(1):48-56. doi: 10.1038/s41374-021-00665-8. Epub 2021 Sep 8. PMID: 34497367. 6: Silva JDPD, Ballejo G. Pharmacological characterization of the calcium influx pathways involved in nitric oxide production by endothelial cells. Einstein (Sao Paulo). 2019 Jun 3;17(3):eAO4600. doi: 10.31744/einstein_journal/2019AO4600. PMID: 31166411; PMCID: PMC6550436. 7: Kim DW, Lee K, Lee DH, Cha CJ. Comparative genomic analysis of pyrene- degrading Mycobacterium species: Genomic islands and ring-hydroxylating dioxygenases involved in pyrene degradation. J Microbiol. 2018 Nov;56(11):798-804. doi: 10.1007/s12275-018-8372-0. Epub 2018 Oct 24. PMID: 30353465. 8: Saliba Y, Jebara V, Hajal J, Maroun R, Chacar S, Smayra V, Abramowitz J, Birnbaumer L, Farès N. Transient Receptor Potential Canonical 3 and Nuclear Factor of Activated T Cells C3 Signaling Pathway Critically Regulates Myocardial Fibrosis. Antioxid Redox Signal. 2019 Jun 1;30(16):1851-1879. doi: 10.1089/ars.2018.7545. Epub 2018 Nov 29. PMID: 30318928; PMCID: PMC6486676. 9: Chauvet S, Jarvis L, Chevallet M, Shrestha N, Groschner K, Bouron A. Pharmacological Characterization of the Native Store-Operated Calcium Channels of Cortical Neurons from Embryonic Mouse Brain. Front Pharmacol. 2016 Dec 12;7:486. doi: 10.3389/fphar.2016.00486. Erratum in: Front Pharmacol. 2017 Mar 22;8:152. doi: 10.3389/fphar.2017.00152. PMID: 28018223; PMCID: PMC5149554. 10: Álvarez-Miguel I, Cidad P, Pérez-García MT, López-López JR. Differences in TRPC3 and TRPC6 channels assembly in mesenteric vascular smooth muscle cells in essential hypertension. J Physiol. 2017 Mar 1;595(5):1497-1513. doi: 10.1113/JP273327. Epub 2016 Dec 29. PMID: 27861908; PMCID: PMC5330869. 11: Kim HJ, Woo J, Nam Y, Nam JH, Kim WK. Differential modulation of TWIK- related K+ channel (TREK) and TWIK-related acid-sensitive K+ channel 2 (TASK2) activity by pyrazole compounds. Eur J Pharmacol. 2016 Nov 15;791:686-695. doi: 10.1016/j.ejphar.2016.08.030. Epub 2016 Aug 26. PMID: 27568832. 12: Alkhani H, Ase AR, Grant R, O'Donnell D, Groschner K, Séguéla P. Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. Mol Pain. 2014 Jun 26;10:43. doi: 10.1186/1744-8069-10-43. PMID: 24965271; PMCID: PMC4118315. 13: Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I, Frischauf I, Glasnov TN, Kappe CO, Romanin C, Groschner K. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol. 2012 Dec;167(8):1712-22. doi: 10.1111/j.1476-5381.2012.02126.x. PMID: 22862290; PMCID: PMC3525873. 14: Pattaradilokrat S, Cheesman SJ, Carter R. Linkage group selection: towards identifying genes controlling strain specific protective immunity in malaria. PLoS One. 2007 Sep 12;2(9):e857. doi: 10.1371/journal.pone.0000857. PMID: 17848988; PMCID: PMC1959240. 15: van Paridon PA, Gadella TW Jr, Somerharju PJ, Wirtz KW. Properties of the binding sites for the sn-1 and sn-2 acyl chains on the phosphatidylinositol transfer protein from bovine brain. Biochemistry. 1988 Aug 23;27(17):6208-14. doi: 10.1021/bi00417a003. PMID: 3219332.