MedKoo Cat#: 598545 | Name: Quinoxyfen
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Quinoxyfen is a fungicide of the phenoxyquinoline class used to control powdery mildew, Uncinula necator (Schw.) Burr. Quinoxyfen has been identified as a PPARgamma agonist.

Chemical Structure

Quinoxyfen
Quinoxyfen
CAS#124495-18-7

Theoretical Analysis

MedKoo Cat#: 598545

Name: Quinoxyfen

CAS#: 124495-18-7

Chemical Formula: C15H8Cl2FNO

Exact Mass: 306.9967

Molecular Weight: 308.13

Elemental Analysis: C, 58.47; H, 2.62; Cl, 23.01; F, 6.17; N, 4.55; O, 5.19

Price and Availability

Size Price Availability Quantity
100mg USD 475.00 2 weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Quinoxyfen; Legend; DE 795; DE-795; DE795;
IUPAC/Chemical Name
5,7-dichloro-4-(4-fluorophenoxy)quinoline
InChi Key
WRPIRSINYZBGPK-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H8Cl2FNO/c16-9-7-12(17)15-13(8-9)19-6-5-14(15)20-11-3-1-10(18)2-4-11/h1-8H
SMILES Code
FC1=CC=C(OC2=CC=NC3=CC(Cl)=CC(Cl)=C23)C=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
To be determined
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
Quinoxyfen functions systemically with protective properties, translocates, and inhibits appressoria development stopping infections.
In vitro activity:
Calonectria pseudonaviculata causes leaf spot and stem lesions resulting in boxwood shrub defoliation and dieback. Fungicides representing 20 different active ingredients were evaluated for their effects on conidial germination and mycelial growth using in vitro assays. This study found that quinoxyfen did not inhibit either C. pseudonaviculata conidial germination or mycelial growth. Reference: Plant Dis. 2014 Jan;98(1):99-102. https://pubmed.ncbi.nlm.nih.gov/30708594/
In vivo activity:
Quinoxyfen and its analogs have been investigated as catalyst ligands. There were six fungicide treatments tested on diseased leaves, one of which was quinoxyfen. This study documented compromised fungicide efficacy due to fungicide resistance. This study documented the first reported resistance in P. aphanis to quinoxyfen worldwide. Reference: Plant Dis. 2021 Sep;105(9):2601-2605. https://pubmed.ncbi.nlm.nih.gov/33404274/

Preparing Stock Solutions

The following data is based on the product molecular weight 308.13 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Andrews FV, Kim SM, Edwards L, Schlezinger JJ. Identifying adipogenic chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models. Toxicol In Vitro. 2020 Sep;67:104904. doi: 10.1016/j.tiv.2020.104904. Epub 2020 May 28. PMID: 32473317; PMCID: PMC9432570. 2. LaMondia JA. Fungicide Efficacy Against Calonectria pseudonaviculata, Causal Agent of Boxwood Blight. Plant Dis. 2014 Jan;98(1):99-102. doi: 10.1094/PDIS-04-13-0373-RE. PMID: 30708594. 3. Palmer MG, Holmes GJ. Fungicide Sensitivity in Strawberry Powdery Mildew Caused by Podosphaera aphanis in California. Plant Dis. 2021 Sep;105(9):2601-2605. doi: 10.1094/PDIS-12-20-2604-RE. Epub 2021 Oct 24. PMID: 33404274. 4. Orton F, Rosivatz E, Scholze M, Kortenkamp A. Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens. Environ Health Perspect. 2011 Jun;119(6):794-800. doi: 10.1289/ehp.1002895. Epub 2011 Feb 10. PMID: 21310686; PMCID: PMC3114813.
In vitro protocol:
1. Andrews FV, Kim SM, Edwards L, Schlezinger JJ. Identifying adipogenic chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models. Toxicol In Vitro. 2020 Sep;67:104904. doi: 10.1016/j.tiv.2020.104904. Epub 2020 May 28. PMID: 32473317; PMCID: PMC9432570. 2. LaMondia JA. Fungicide Efficacy Against Calonectria pseudonaviculata, Causal Agent of Boxwood Blight. Plant Dis. 2014 Jan;98(1):99-102. doi: 10.1094/PDIS-04-13-0373-RE. PMID: 30708594.
In vivo protocol:
1. Palmer MG, Holmes GJ. Fungicide Sensitivity in Strawberry Powdery Mildew Caused by Podosphaera aphanis in California. Plant Dis. 2021 Sep;105(9):2601-2605. doi: 10.1094/PDIS-12-20-2604-RE. Epub 2021 Oct 24. PMID: 33404274. 2. Orton F, Rosivatz E, Scholze M, Kortenkamp A. Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens. Environ Health Perspect. 2011 Jun;119(6):794-800. doi: 10.1289/ehp.1002895. Epub 2011 Feb 10. PMID: 21310686; PMCID: PMC3114813.
1: Duman B, Erkmen C, Zahirul Kabir M, Ching Yi L, Mohamad SB, Uslu B. In vitro interactions of two pesticides, propazine and quinoxyfen with bovine serum albumin: Spectrofluorometric and molecular docking investigations. Spectrochim Acta A Mol Biomol Spectrosc. 2023 Nov 5;300:122907. doi: 10.1016/j.saa.2023.122907. Epub 2023 May 25. PMID: 37257323. 2: Sun BL, Wang YY, Yang S, Tu MT, Shao YY, Hua Y, Zhou Y, Tan CX. Benzamides Substituted with Quinoline-Linked 1,2,4-Oxadiazole: Synthesis, Biological Activity and Toxicity to Zebrafish Embryo. Molecules. 2022 Jun 20;27(12):3946. doi: 10.3390/molecules27123946. PMID: 35745068; PMCID: PMC9229796. 3: Tait S, Lori G, Tassinari R, La Rocca C, Maranghi F. In Vitro Assessment and Toxicological Prioritization of Pesticide Mixtures at Concentrations Derived from Real Exposure in Occupational Scenarios. Int J Environ Res Public Health. 2022 Apr 25;19(9):5202. doi: 10.3390/ijerph19095202. PMID: 35564597; PMCID: PMC9104687. 4: Birtek RI, Karpuzcu ME, Ozturk I. Occurrence of priority substances in urban wastewaters of Istanbul and the estimation of the associated risks in the effluents. Environ Monit Assess. 2022 May 13;194(6):426. doi: 10.1007/s10661-022-09840-w. PMID: 35552554. 5: Kim S, Reed E, Monti S, Schlezinger JJ. A Data-Driven Transcriptional Taxonomy of Adipogenic Chemicals to Identify White and Brite Adipogens. Environ Health Perspect. 2021 Jul;129(7):77006. doi: 10.1289/EHP6886. Epub 2021 Jul 29. PMID: 34323617; PMCID: PMC8320370. 6: Bundschuh M, Zubrod JP, Wernicke T, Konschak M, Werner L, Brühl CA, Baudy P, Schulz R. Bottom-up effects of fungicides on tadpoles of the European common frog (Rana temporaria). Ecol Evol. 2021 Mar 21;11(9):4353-4365. doi: 10.1002/ece3.7332. PMID: 33976815; PMCID: PMC8093721. 7: Palmer MG, Holmes GJ. Fungicide Sensitivity in Strawberry Powdery Mildew Caused by Podosphaera aphanis in California. Plant Dis. 2021 Sep;105(9):2601-2605. doi: 10.1094/PDIS-12-20-2604-RE. Epub 2021 Oct 24. PMID: 33404274. 8: European Food Safety Authority (EFSA); Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Scarlato AP, Theobald A, Vagenende B, Verani A. Review of the existing maximum residue levels for quinoxyfen according to Article 12 of Regulation (EC) No 396/2005. EFSA J. 2020 Dec 4;18(12):e06316. doi: 10.2903/j.efsa.2020.6316. PMID: 33304414; PMCID: PMC7716242. 9: Scholze M, Taxvig C, Kortenkamp A, Boberg J, Christiansen S, Svingen T, Lauschke K, Frandsen H, Ermler S, Hermann SS, Pedersen M, Lykkeberg AK, Axelstad M, Vinggaard AM. Quantitative in Vitro to in Vivo Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders. Environ Health Perspect. 2020 Nov;128(11):117005. doi: 10.1289/EHP6774. Epub 2020 Nov 25. PMID: 33236927; PMCID: PMC7687371. 10: Andrews FV, Kim SM, Edwards L, Schlezinger JJ. Identifying adipogenic chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models. Toxicol In Vitro. 2020 Sep;67:104904. doi: 10.1016/j.tiv.2020.104904. Epub 2020 May 28. PMID: 32473317; PMCID: PMC9432570. 11: Warneke B, Thiessen LD, Mahaffee WF. Effect of Fungicide Mobility and Application Timing on the Management of Grape Powdery Mildew. Plant Dis. 2020 Apr;104(4):1167-1174. doi: 10.1094/PDIS-06-19-1285-RE. Epub 2020 Feb 13. PMID: 32053475. 12: Polledri E, Mercadante R, Nijssen R, Consonni D, Mol H, Fustinoni S. Hair as a matrix to evaluate cumulative and aggregate exposure to pesticides in winegrowers. Sci Total Environ. 2019 Oct 15;687:808-816. doi: 10.1016/j.scitotenv.2019.06.061. Epub 2019 Jun 5. PMID: 31412484. 13: Barbieri MV, Postigo C, Guillem-Argiles N, Monllor-Alcaraz LS, Simionato JI, Stella E, Barceló D, López de Alda M. Analysis of 52 pesticides in fresh fish muscle by QuEChERS extraction followed by LC-MS/MS determination. Sci Total Environ. 2019 Feb 25;653:958-967. doi: 10.1016/j.scitotenv.2018.10.289. Epub 2018 Oct 22. PMID: 30759621. 14: Dupraz V, Stachowski-Haberkorn S, Wicquart J, Tapie N, Budzinski H, Akcha F. Demonstrating the need for chemical exposure characterisation in a microplate test system: toxicity screening of sixteen pesticides on two marine microalgae. Chemosphere. 2019 Apr;221:278-291. doi: 10.1016/j.chemosphere.2019.01.035. Epub 2019 Jan 8. PMID: 30640011. 15: Zhou Y, Shen C, Du H, Bao Y, He C, Wang C, Zuo Z. Bioassay system for the detection of aryl hydrocarbon receptor agonists in waterborne pesticides using zebrafish cyp1a1 promoter-luciferase recombinant hepatic cells. Chemosphere. 2019 Apr;220:61-68. doi: 10.1016/j.chemosphere.2018.12.115. Epub 2018 Dec 17. PMID: 30579175. 16: Feng X, Nita M, Baudoin AB. Evaluation of Quinoxyfen Resistance of Erysiphe necator (Grape Powdery Mildew) in a Single Virginia Vineyard. Plant Dis. 2018 Dec;102(12):2586-2591. doi: 10.1094/PDIS-11-17-1822-RE. Epub 2018 Oct 11. PMID: 30307835. 17: Duncan H, Abad-Somovilla A, Abad-Fuentes A, Agulló C, Mercader JV. Immunochemical rapid determination of quinoxyfen, a priority hazardous pollutant. Chemosphere. 2018 Nov;211:302-307. doi: 10.1016/j.chemosphere.2018.07.166. Epub 2018 Jul 30. PMID: 30077110. 18: Newton K, Zubrod JP, Englert D, Lüderwald S, Schell T, Baudy P, Konschak M, Feckler A, Schulz R, Bundschuh M. The evil within? Systemic fungicide application in trees enhances litter quality for an aquatic decomposer- detritivore system. Environ Pollut. 2018 Oct;241:549-556. doi: 10.1016/j.envpol.2018.05.069. Epub 2018 Jun 6. PMID: 29883956. 19: Dimzon IKD, Morata AS, Müller J, Yanela RK, Lebertz S, Weil H, Perez TR, Müller J, Dayrit FM, Knepper TP. Trace organic chemical pollutants from the lake waters of San Pablo City, Philippines by targeted and non-targeted analysis. Sci Total Environ. 2018 Oct 15;639:588-595. doi: 10.1016/j.scitotenv.2018.05.217. Epub 2018 May 26. PMID: 29800852. 20: European Food Safety Authority (EFSA); Arena M, Auteri D, Barmaz S, Bellisai G, Brancato A, Brocca D, Bura L, Byers H, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Miron I, Molnar T, Nougadere A, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Verani A, Villamar-Bouza L. Peer review of the targeted hazard assessment of the pesticide active substance quinoxyfen. EFSA J. 2018 Jan 25;16(1):e05085. doi: 10.2903/j.efsa.2018.5085. PMID: 32625655; PMCID: PMC7009709.