MedKoo Cat#: 597943 | Name: Tenuazonic acid
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Tenuazonic acid is a metabolite found in a strain of the fungus Alternaria tenuis Auct. which functions as an antibiotic with antiviral and antineoplastic properties, and may also act as a mycotoxin.

Chemical Structure

Tenuazonic acid
Tenuazonic acid
CAS#610-88-8 (free acid)

Theoretical Analysis

MedKoo Cat#: 597943

Name: Tenuazonic acid

CAS#: 610-88-8 (free acid)

Chemical Formula: C10H15NO3

Exact Mass: 197.1052

Molecular Weight: 197.23

Elemental Analysis: C, 60.90; H, 7.67; N, 7.10; O, 24.34

Price and Availability

Size Price Availability Quantity
5mg USD 750.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Synonym
Tenuazonic acid; L-Tenuazonic acid;
IUPAC/Chemical Name
(S)-3-acetyl-5-((S)-sec-butyl)-4-hydroxy-1,5-dihydro-2H-pyrrol-2-one
InChi Key
CEIZFXOZIQNICU-XNCJUZBTSA-N
InChi Code
InChI=1S/C10H15NO3/c1-4-5(2)8-9(13)7(6(3)12)10(14)11-8/h5,8,13H,4H2,1-3H3,(H,11,14)/t5-,8-/m0/s1
SMILES Code
O=C1N[C@@H]([C@@H](C)CC)C(O)=C1C(C)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Certificate of Analysis
Safety Data Sheet (SDS)
Biological target:
ROS
In vitro activity:
the A domain of AaTAS1 catalyzed the start of TeA biosynthesis in vitro. Simultaneously, the pathogenicity of ΔAaTAS1 was also significantly decreased. Transcriptome analysis confirmed the abovementioned consistency between the TeA-producing phenotypes and related gene expression. Reference: Sun F, Cao X, Yu D, Hu D, Yan Z, Fan Y, Wang C, Wu A. AaTAS1 and AaMFS1 Genes for Biosynthesis or Efflux Transport of Tenuazonic Acid and Pathogenicity of Alternaria alternata. Mol Plant Microbe Interact. 2022 May;35(5):416-427. doi: 10.1094/MPMI-12-21-0300-R. Epub 2022 Apr 26. PMID: 35175146.
In vivo activity:
Tenuazonic acid (TeA) is the predominant toxin detected in the field (205.86~41,389.19 μg/kg) and in vivo (7.64~526,986.37 μg/kg) experiments, and the second-most abundant toxin is alternariol (AOH). In addition, a small quantity of conjugated toxins, AOH-9-glucoside (AOH-9-Glc) and alternariol monomethyl ether-3-glucoside (AME-3-Glc), were screened in the in vivo experiment. Reference: Qin Q, Fan Y, Jia Q, Duan S, Liu F, Jia B, Wang G, Guo W, Wang C. The Potential of Alternaria Toxins Production by A. alternata in Processing Tomatoes. Toxins (Basel). 2022 Nov 24;14(12):827. doi: 10.3390/toxins14120827. PMID: 36548724; PMCID: PMC9781988.
Solvent mg/mL mM
Solubility
DMSO 50.0 253.51
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 197.23 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
In vitro protocol:
1: Qin Q, Fan Y, Jia Q, Duan S, Liu F, Jia B, Wang G, Guo W, Wang C. The Potential of Alternaria Toxins Production by A. alternata in Processing Tomatoes. Toxins (Basel). 2022 Nov 24;14(12):827. doi: 10.3390/toxins14120827. PMID: 36548724; PMCID: PMC9781988. 1: Sun F, Cao X, Yu D, Hu D, Yan Z, Fan Y, Wang C, Wu A. AaTAS1 and AaMFS1 Genes for Biosynthesis or Efflux Transport of Tenuazonic Acid and Pathogenicity of Alternaria alternata. Mol Plant Microbe Interact. 2022 May;35(5):416-427. doi: 10.1094/MPMI-12-21-0300-R. Epub 2022 Apr 26. PMID: 35175146. 2: Wang J, Zhou Y, Wang P, Zhao L, Zhang H, Qu H, Xu F. Inhibitory Effect and Mechanism of Carvacrol against Black Mold Disease Agent Alternaria alternata in Goji Berries. J Fungi (Basel). 2024 Jun 3;10(6):402. doi: 10.3390/jof10060402. PMID: 38921388; PMCID: PMC11204410.
In vivo protocol:
1: Qin Q, Fan Y, Jia Q, Duan S, Liu F, Jia B, Wang G, Guo W, Wang C. The Potential of Alternaria Toxins Production by A. alternata in Processing Tomatoes. Toxins (Basel). 2022 Nov 24;14(12):827. doi: 10.3390/toxins14120827. PMID: 36548724; PMCID: PMC9781988. 2: Zhu HJ, Zhang B, Wei W, Liu SH, Xiang L, Zhu J, Jiao RH, Igarashi Y, Bashiri G, Liang Y, Tan RX, Ge HM. AvmM catalyses macrocyclization through dehydration/Michael-type addition in alchivemycin A biosynthesis. Nat Commun. 2022 Aug 3;13(1):4499. doi: 10.1038/s41467-022-32088-4. PMID: 35922406; PMCID: PMC9349299.
1: Fang Q, Li S, Wang T, Zhong M, Nie B, Zheng K, Tang X, Xiao J, Liao M, Cao H. Occurrence of contamination and the reduction and transfer of Alternaria toxins in apples during processing. Food Res Int. 2025 Jan;199:115373. doi: 10.1016/j.foodres.2024.115373. Epub 2024 Nov 27. PMID: 39658170. 2: Crudo F, Partsch V, Braga D, Blažević R, Rollinger JM, Varga E, Marko D. Discovery of the Alternaria mycotoxins alterperylenol and altertoxin I as novel immunosuppressive and antiestrogenic compounds in vitro. Arch Toxicol. 2024 Oct 2. doi: 10.1007/s00204-024-03877-1. Epub ahead of print. PMID: 39358629. 3: Mulisa G, Pero-Gascon R, McCormack V, Bisanz JE, Talukdar FR, Abebe T, De Boevre M, De Saeger S. Multiple mycotoxin exposure assessment through human biomonitoring in an esophageal cancer case-control study in the Arsi-Bale districts of Oromia region of Ethiopia. Int J Hyg Environ Health. 2025 Jan;263:114466. doi: 10.1016/j.ijheh.2024.114466. Epub 2024 Sep 21. PMID: 39306897. 4: Ji X, He Y, Xiao Y, Liang Y, Lyu W, Yang H. The fate of Alternaria toxin tenuazonic acid (TeA) during the processing chain of wheat flour products and risk control strategies for mycotoxins. Food Res Int. 2024 Oct;194:114941. doi: 10.1016/j.foodres.2024.114941. Epub 2024 Aug 18. PMID: 39232551. 5: Backx S, Van Vooren J, Geerts J, Hyde C, Van Hecke O, Pappaert H, Dewitte K, Ameye M, Audenaert K, Desmedt W, Mangelinckx S. Study of Amino Acid-Derived 3-Acyltetramic Acids as Herbicidal Agents. J Agric Food Chem. 2024 Sep 11;72(36):19644-19656. doi: 10.1021/acs.jafc.4c04811. Epub 2024 Sep 3. PMID: 39225292. 6: Ji XY, Wang BY, Zhang YF, Zhang YJ, Lai YJ, Yang Y, Wang XC, Wang SY, Laborda P, Shi XC. Dipicolinic acid reduces Epicoccum sorghinum symptoms on maize and inhibits tenuazonic acid biosynthesis. Pest Manag Sci. 2024 Dec;80(12):6545-6554. doi: 10.1002/ps.8393. Epub 2024 Aug 27. PMID: 39189553. 7: Qin Y, Zhou H, Yang Y, Guo T, Zhou Y, Zhang Y, Ma L. Metabolome and Its Mechanism Profiling in the Synergistic Toxic Effects Induced by Co-Exposure of Tenuazonic Acid and Patulin in Caco-2 Cells. Toxins (Basel). 2024 Jul 15;16(7):319. doi: 10.3390/toxins16070319. PMID: 39057959; PMCID: PMC11281550. 8: Visintin L, García Nicolás M, De Saeger S, De Boevre M. Validation of a UPLC- MS/MS Method for Multi-Matrix Biomonitoring of Alternaria Toxins in Humans. Toxins (Basel). 2024 Jun 28;16(7):296. doi: 10.3390/toxins16070296. PMID: 39057936; PMCID: PMC11281182. 9: Dodlek Šarkanj I, Vahčić N, Markov K, Haramija J, Uršulin-Trstenjak N, Hajdek K, Sulyok M, Krska R, Šarkanj B. First Report on Mycotoxin Contamination of Hops (Humulus lupulus L.). Toxins (Basel). 2024 Jun 26;16(7):293. doi: 10.3390/toxins16070293. PMID: 39057933; PMCID: PMC11281705. 10: Kumari A, Singh K, Uttam G. Tenuazonic acid-induced mycotoxicosis in an immunosuppressed mouse model and its prophylaxis with cinnamaldehyde. Chemosphere. 2024 Sep;363:142812. doi: 10.1016/j.chemosphere.2024.142812. Epub 2024 Jul 14. PMID: 39004150. 11: Shi X, Zhang S, Yang Y, Jia L, Herrera-Balandrano DD, Wang S, Laborda P. Occurrence and management of the emerging pathogen Epicoccum sorghinum. Plant Dis. 2024 Jul 2. doi: 10.1094/PDIS-03-24-0711-FE. Epub ahead of print. PMID: 38956954. 12: Peach JT, Puntscher H, Höger H, Marko D, Warth B. Rats exposed to Alternaria toxins in vivo exhibit altered liver activity highlighted by disruptions in riboflavin and acylcarnitine metabolism. Arch Toxicol. 2024 Oct;98(10):3477-3489. doi: 10.1007/s00204-024-03810-6. Epub 2024 Jun 28. PMID: 38951189; PMCID: PMC11402861. 13: Wang J, Zhou Y, Wang P, Zhao L, Zhang H, Qu H, Xu F. Inhibitory Effect and Mechanism of Carvacrol against Black Mold Disease Agent Alternaria alternata in Goji Berries. J Fungi (Basel). 2024 Jun 3;10(6):402. doi: 10.3390/jof10060402. PMID: 38921388; PMCID: PMC11204410. 14: Zhang J, Huang R, Feng Y, Yang T, Sun M, Kuang H, Xu C, Guo L. Development and validation of stable isotope dilution LC-MS/MS method for simultaneous quantification of four Alternaria toxins in 15 food commodities. Food Chem. 2024 Nov 1;457:140122. doi: 10.1016/j.foodchem.2024.140122. Epub 2024 Jun 18. PMID: 38908243. 15: Ge S, Xie Y, Ding K, Xu S, Xu H, Chang X, Li H, Wang R, Luo Z, Shan Y, Ding S. The combination of metabolome and transcriptome clarifies the inhibition of the Alternaria toxin accumulation by methyl ferulate. Food Chem. 2024 Oct 30;456:140060. doi: 10.1016/j.foodchem.2024.140060. Epub 2024 Jun 10. PMID: 38878540. 16: Ji X, Xiao Y, Yang W, Wei W, Lyu W, Wang X, Yang H. Comprehensive identification and risk assessment of regulated and emerging mycotoxins in infant foods and related raw materials and risk management advice: A case study of an infant food company in China. Food Res Int. 2024 Jul;187:114304. doi: 10.1016/j.foodres.2024.114304. Epub 2024 Apr 17. PMID: 38763623. 17: Zhou S, Zhu X, Song S, Sun M, Kuang H, Xu C, Guo L. Rapid and simultaneous detection of five mycotoxins and their analogs with a gold nanoparticle-based multiplex immuno-strip sensor. Food Microbiol. 2024 Aug;121:104510. doi: 10.1016/j.fm.2024.104510. Epub 2024 Feb 27. PMID: 38637074. 18: Furlong EB, Buffon JG, Cerqueira MB, Kupski L. Mitigation of Mycotoxins in Food-Is It Possible? Foods. 2024 Apr 5;13(7):1112. doi: 10.3390/foods13071112. PMID: 38611416; PMCID: PMC11011883. 19: Sedova IB, Chalyy ZA, Ivanova UV, Tutelyan VA. [Alternaria toxins in tomato products marketed in the Russian Federation]. Vopr Pitan. 2024;93(1):103-111. Russian. doi: 10.33029/0042-8833-2024-93-1-103-111. Epub 2024 Jan 19. PMID: 38555614. 20: Havshøi NW, Nielsen J, Fuglsang AT. The mechanism behind tenuazonic acid- mediated inhibition of plant plasma membrane H+-ATPase and plant growth. J Biol Chem. 2024 Apr;300(4):107167. doi: 10.1016/j.jbc.2024.107167. Epub 2024 Mar 13. PMID: 38490436; PMCID: PMC11002603.