MedKoo Cat#: 597350 | Name: O-Succinylhomoserine
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

O-Succinylhomoserine is an intermediate in the formation of cystathionine, and consequently of methionine by E. coli. O-Succinylhomoserine is a MetB substrate.

Chemical Structure

O-Succinylhomoserine
O-Succinylhomoserine
CAS#1492-23-5

Theoretical Analysis

MedKoo Cat#: 597350

Name: O-Succinylhomoserine

CAS#: 1492-23-5

Chemical Formula: C8H13NO6

Exact Mass: 219.0743

Molecular Weight: 219.19

Elemental Analysis: C, 43.84; H, 5.98; N, 6.39; O, 43.79

Price and Availability

Size Price Availability Quantity
25mg USD 300.00 2 weeks
100mg USD 550.00 2 weeks
250mg USD 950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
O-Succinylhomoserine; O-Succinyl-L-homoserine;
IUPAC/Chemical Name
O-(3-carboxypropanoyl)-L-homoserine
InChi Key
GNISQJGXJIDKDJ-YFKPBYRVSA-N
InChi Code
InChI=1S/C8H13NO6/c9-5(8(13)14)3-4-15-7(12)2-1-6(10)11/h5H,1-4,9H2,(H,10,11)(H,13,14)/t5-/m0/s1
SMILES Code
N[C@@H](CCOC(CCC(O)=O)=O)C(O)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>3 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.03.00
More Info
Product Data
Biological target:
O-Succinyl-L-homoserine is a homoserine derivative. O-Succinyl-L-homoserine is an intermediate in the biosynthesis of methionine in Escherichia coli and Salmonella typhimurium.
In vitro activity:
TBD
In vivo activity:
TBD
Solvent mg/mL mM
Solubility
Water 17.9 81.48
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 219.19 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
TBD
In vitro protocol:
TBD
In vivo protocol:
TBD
1: Harting C, Teleki A, Braakmann M, Jankowitsch F, Takors R. Systemic intracellular analysis for balancing complex biosynthesis in a transcriptionally deregulated Escherichia coli l-Methionine producer. Microb Biotechnol. 2024 Mar;17(3):e14433. doi: 10.1111/1751-7915.14433. PMID: 38528766; PMCID: PMC10963904. 2: Girija A, Hacham Y, Dvir S, Panda S, Lieberman-Lazarovich M, Amir R. Cystathionine γ-synthase expression in seeds alters metabolic and DNA methylation profiles in Arabidopsis. Plant Physiol. 2023 Aug 31;193(1):595-610. doi: 10.1093/plphys/kiad330. PMID: 37300538. 3: Zhang Y, Li D, Feng X, Wang X, Wang M, Han W, Manzoor MA, Li G, Chen T, Wang H, Cai Y. Whole-genome analysis of CGS, SAHH, SAMS gene families in five Rosaceae species and their expression analysis in Pyrus bretschneideri. PeerJ. 2022 Mar 16;10:e13086. doi: 10.7717/peerj.13086. PMID: 35313526; PMCID: PMC8934043. 4: Zhu WY, Niu K, Liu P, Cai X, Liu ZQ, Zheng YG. Combining fermentation to produce O-succinyl-l-homoserine and enzyme catalysis for the synthesis of l-methionine in one pot. J Biosci Bioeng. 2021 Nov;132(5):451-459. doi: 10.1016/j.jbiosc.2021.07.002. Epub 2021 Aug 20. PMID: 34420895. 5: Brewster JL, Pachl P, McKellar JLO, Selmer M, Squire CJ, Patrick WM. Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis. J Biol Chem. 2021 Jan-Jun;296:100797. doi: 10.1016/j.jbc.2021.100797. Epub 2021 May 18. PMID: 34019879; PMCID: PMC8191291. 6: Bloch I, Haviv H, Rapoport I, Cohen E, Shushan RSB, Dotan N, Sher I, Hacham Y, Amir R, Gal M. Discovery and characterization of small molecule inhibitors of cystathionine gamma-synthase with in planta activity. Plant Biotechnol J. 2021 Sep;19(9):1785-1797. doi: 10.1111/pbi.13591. Epub 2021 May 12. PMID: 33773037; PMCID: PMC8428831. 7: Liu P, Liu JS, Zhu WY, Zhang B, Liu ZQ, Zheng YG. O-Succinyl-l-homoserine overproduction with enhancement of the precursor succinyl-CoA supply by engineered Escherichia coli. J Biotechnol. 2021 Jan 10;325:164-172. doi: 10.1016/j.jbiotec.2020.11.002. Epub 2020 Nov 4. PMID: 33157196. 8: Zhu WY, Niu K, Liu P, Fan YH, Liu ZQ, Zheng YG. Enhanced O-succinyl-l- homoserine production by recombinant Escherichia coli ΔIJBB*TrcmetL/pTrc- metAfbr -Trc-thrAfbr -yjeH via multilevel fermentation optimization. J Appl Microbiol. 2021 Jun;130(6):1960-1971. doi: 10.1111/jam.14884. Epub 2020 Nov 9. PMID: 33025634. 9: Cotton CA, Bernhardsgrütter I, He H, Burgener S, Schulz L, Paczia N, Dronsella B, Erban A, Toman S, Dempfle M, De Maria A, Kopka J, Lindner SN, Erb TJ, Bar-Even A. Underground isoleucine biosynthesis pathways in E. coli. Elife. 2020 Aug 24;9:e54207. doi: 10.7554/eLife.54207. PMID: 32831171; PMCID: PMC7476758. 10: Chen M, Liu CT, Tang Y. Discovery and Biocatalytic Application of a PLP- Dependent Amino Acid γ-Substitution Enzyme That Catalyzes C-C Bond Formation. J Am Chem Soc. 2020 Jun 10;142(23):10506-10515. doi: 10.1021/jacs.0c03535. Epub 2020 Jun 1. PMID: 32434326; PMCID: PMC7335459. 11: Tang XL, Du XY, Chen LJ, Liu ZQ, Zheng YG. Enhanced production of L-methionine in engineered Escherichia coli with efficient supply of one carbon unit. Biotechnol Lett. 2020 Mar;42(3):429-436. doi: 10.1007/s10529-019-02786-z. Epub 2019 Dec 21. PMID: 31865476. 12: Matityahu I, Godo I, Hacham Y, Amir R. The level of threonine in tobacco seeds is limited by substrate availability, while the level of methionine is limited also by the activity of cystathionine γ-synthase. Plant Sci. 2019 Jun;283:195-201. doi: 10.1016/j.plantsci.2019.02.020. Epub 2019 Mar 12. PMID: 31128689. 13: Wang F, Li W, Wang G, Yu M, Zhong J, Xu C, Li D, Zhou Y. Gas chromatography- mass spectrometry based serum metabolic analysis for premature infants and the relationship with necrotizing enterocolitis: a cross-sectional study. Ital J Pediatr. 2019 Apr 29;45(1):54. doi: 10.1186/s13052-019-0646-6. PMID: 31036043; PMCID: PMC6489265. 14: Agarwalla H , Anila HA , Ali F , Pradhan SR , Ganguly B , Pramanik SK , Das A . Fluorescent chemodosimeter for quantification of cystathionine-γ-synthase activity in plant extracts and imaging of endogenous biothiols. Chem Commun (Camb). 2018 Aug 9;54(65):9079-9082. doi: 10.1039/c8cc04296a. PMID: 30058655. 15: Bai Z, Qi T, Liu Y, Wu Z, Ma L, Liu W, Cao Y, Bao Y, Fu C. Alteration of S-adenosylhomocysteine levels affects lignin biosynthesis in switchgrass. Plant Biotechnol J. 2018 Dec;16(12):2016-2026. doi: 10.1111/pbi.12935. Epub 2018 Jun 6. PMID: 29704888; PMCID: PMC6230947. 16: Saghazadeh-Dezfuli M, Fanaei H, Gharib-Naseri MK, Nasri S, Mard SA. Antidiarrheal effect of sodium hydrosulfide in diabetic rats: In vitro and in vivo studies. Neurogastroenterol Motil. 2018 Oct;30(10):e13273. doi: 10.1111/nmo.13273. Epub 2017 Dec 29. PMID: 29286194. 17: Sagong HY, Kim KJ. Structural Insights into Substrate Specificity of Cystathionine γ-Synthase from Corynebacterium glutamicum. J Agric Food Chem. 2017 Jul 26;65(29):6002-6008. doi: 10.1021/acs.jafc.7b02391. Epub 2017 Jul 13. PMID: 28675039. 18: Cohen H, Hacham Y, Panizel I, Rogachev I, Aharoni A, Amir R. Repression of CYSTATHIONINE γ-SYNTHASE in Seeds Recruits the S-Methylmethionine Cycle. Plant Physiol. 2017 Jul;174(3):1322-1333. doi: 10.1104/pp.17.00579. Epub 2017 May 23. PMID: 28536103; PMCID: PMC5490928. 19: Kumar P, Jander G. Concurrent Overexpression of Arabidopsis thaliana Cystathionine γ-Synthase and Silencing of Endogenous Methionine γ-Lyase Enhance Tuber Methionine Content in Solanum tuberosum. J Agric Food Chem. 2017 Apr 5;65(13):2737-2742. doi: 10.1021/acs.jafc.7b00272. Epub 2017 Mar 27. PMID: 28294619. 20: Sato D, Shiba T, Mizuno S, Kawamura A, Hanada S, Yamada T, Shinozaki M, Yanagitani M, Tamura T, Inagaki K, Harada S. The hyperthermophilic cystathionine γ-synthase from the aerobic crenarchaeon Sulfolobus tokodaii: expression, purification, crystallization and structural insights. Acta Crystallogr F Struct Biol Commun. 2017 Mar 1;73(Pt 3):152-158. doi: 10.1107/S2053230X17002011. Epub 2017 Feb 21. PMID: 28291751; PMCID: PMC5349309.