MedKoo Cat#: 341494 | Name: Xylose

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Xylose is a biochemical.

Chemical Structure

Xylose
Xylose
CAS#25990-60-7

Theoretical Analysis

MedKoo Cat#: 341494

Name: Xylose

CAS#: 25990-60-7

Chemical Formula: C5H10O5

Exact Mass: 150.0528

Molecular Weight: 150.13

Elemental Analysis: C, 40.00; H, 6.71; O, 53.28

Price and Availability

This product is currently not in stock but may be available through custom synthesis. To ensure cost efficiency, the minimum order quantity is 1 gram. The estimated lead time is 2 to 4 months, with pricing dependent on the complexity of the synthesis (typically high for intricate chemistries). Quotes for quantities below 1 gram will not be provided. To request a quote, please click the button below. Note: If this product becomes available in stock in the future, pricing will be listed accordingly.
Bulk Inquiry
Related CAS #
No Data
Synonym
Xylose;
IUPAC/Chemical Name
Xylose
InChi Key
SRBFZHDQGSBBOR-LECHCGJUSA-N
InChi Code
InChI=1S/C5H10O5/c6-2-1-10-5(9)4(8)3(2)7/h2-9H,1H2/t2-,3+,4-,5+/m1/s1
SMILES Code
O1[C@@H]([C@H](O)[C@H]([C@@H](C1)O)O)O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 150.13 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Zhao R, Zhao R, Tu Y, Zhang X, Deng L, Chen X. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity. PLoS One. 2018 May 8;13(5):e0197067. doi: 10.1371/journal.pone.0197067. eCollection 2018. PubMed PMID: 29738566. 2: Liang S, Huang Y, Shim YY, Ma X, Reaney MJT, Wang Y. Novel Flaxseed Gum Nanocomposites are Slow Release Iron Supplements. J Agric Food Chem. 2018 May 8. doi: 10.1021/acs.jafc.8b01347. [Epub ahead of print] PubMed PMID: 29737167. 3: Chen Z, Reznicek WD, Wan C. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. Bioresour Technol. 2018 Apr 18;263:40-48. doi: 10.1016/j.biortech.2018.04.058. [Epub ahead of print] PubMed PMID: 29729540. 4: Seo S, Kang YR, Lee YK, Lee JH, Chang YH. Physicochemical, molecular, emulsifying and rheological characterizations of sage (Salvia splendens) seed gum. Int J Biol Macromol. 2018 May 2. pii: S0141-8130(18)30687-1. doi: 10.1016/j.ijbiomac.2018.04.173. [Epub ahead of print] PubMed PMID: 29729345. 5: Singh N, Puri M, Tuli DK, Gupta RP, Barrow CJ, Mathur AS. Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21. Anaerobe. 2018 May 2. pii: S1075-9964(18)30071-4. doi: 10.1016/j.anaerobe.2018.04.014. [Epub ahead of print] PubMed PMID: 29729318. 6: Mustard JA, Alvarez V, Barocio S, Mathews J, Stoker A, Malik K. Nutritional value and taste play different roles in learning and memory in the honey bee (Apis mellifera). J Insect Physiol. 2018 May 2;107:250-256. doi: 10.1016/j.jinsphys.2018.04.014. [Epub ahead of print] PubMed PMID: 29729260. 7: Boyce A, Walsh G. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production. Appl Biochem Biotechnol. 2018 May 5. doi: 10.1007/s12010-018-2761-z. [Epub ahead of print] PubMed PMID: 29728961. 8: Longati AA, Lino ARA, Giordano RC, Furlan FF, Cruz AJG. Defining research & development process targets through retro-techno-economic analysis: The sugarcane biorefinery case. Bioresour Technol. 2018 Apr 26;263:1-9. doi: 10.1016/j.biortech.2018.04.102. [Epub ahead of print] PubMed PMID: 29723843. 9: Sun J, Tian K, Wang J, Dong Z, Liu X, Permaul K, Singh S, Prior BA, Wang Z. Improved ethanol productivity from lignocellulosic hydrolysates by Escherichia coli with regulated glucose utilization. Microb Cell Fact. 2018 May 2;17(1):66. doi: 10.1186/s12934-018-0915-x. PubMed PMID: 29720171. 10: Valinhas RV, Pantoja LA, Maia ACF, Miguel MGCP, Vanzela APFC, Nelson DL, Santos AS. Xylose fermentation to ethanol by new Galactomyces geotrichum and Candida akabanensis strains. PeerJ. 2018 Apr 27;6:e4673. doi: 10.7717/peerj.4673. eCollection 2018. PubMed PMID: 29719736; PubMed Central PMCID: PMC5926554. 11: Saha B, Sadula S. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts. ChemSusChem. 2018 May 2. doi: 10.1002/cssc.201800494. [Epub ahead of print] PubMed PMID: 29719133. 12: Kowalczyk S, Komoń-Janczara E, Glibowska A, Kuzdraliński A, Czernecki T, Targoński Z. A co-utilization strategy to consume glycerol and monosaccharides by Rhizopus strains for fumaric acid production. AMB Express. 2018 Apr 30;8(1):69. doi: 10.1186/s13568-018-0601-8. PubMed PMID: 29713843. 13: Qin L, Zhao X, Li WC, Zhu JQ, Liu L, Li BZ, Yuan YJ. Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnol Biofuels. 2018 Apr 23;11:118. doi: 10.1186/s13068-018-1118-8. eCollection 2018. PubMed PMID: 29713377; PubMed Central PMCID: PMC5911964. 14: Guo J, Huang S, Chen Y, Guo X, Xiao D. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans. Microb Cell Fact. 2018 Apr 30;17(1):64. doi: 10.1186/s12934-018-0911-1. PubMed PMID: 29712559; PubMed Central PMCID: PMC5925849. 15: Xu ZH, Cheng AD, Xing XP, Zong MH, Bai YP, Li N. Improved synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfural using acclimatized whole cells entrapped in calcium alginate. Bioresour Technol. 2018 Apr 22;262:177-183. doi: 10.1016/j.biortech.2018.04.077. [Epub ahead of print] PubMed PMID: 29705609. 16: Crooks C, Palmer JM, Lindner DL. Draft Genome Sequence of Burkholderia cepacia ATCC 17759, a Polyhydroxybutyrate-Co-Valerate Copolymer-Producing Bacterium. Genome Announc. 2018 Apr 26;6(17). pii: e00348-18. doi: 10.1128/genomeA.00348-18. PubMed PMID: 29700161; PubMed Central PMCID: PMC5920182. 17: Di J, Ma C, Qian J, Liao X, Peng B, He Y. Chemo-enzymatic synthesis of furfuralcohol from chestnut shell hydrolysate by a sequential acid-catalyzed dehydration under microwave and Escherichia coli CCZU-Y10 whole-cells conversion. Bioresour Technol. 2018 Apr 12;262:52-58. doi: 10.1016/j.biortech.2018.04.038. [Epub ahead of print] PubMed PMID: 29698837. 18: Westbrook AW, Ren X, Oh J, Moo-Young M, Chou CP. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng. 2018 Apr 23;47:401-413. doi: 10.1016/j.ymben.2018.04.016. [Epub ahead of print] PubMed PMID: 29698777. 19: Rohman A, van Oosterwijk N, Puspaningsih NNT, Dijkstra BW. Structural basis of product inhibition by arabinose and xylose of the thermostable GH43 β-1,4-xylosidase from Geobacillus thermoleovorans IT-08. PLoS One. 2018 Apr 26;13(4):e0196358. doi: 10.1371/journal.pone.0196358. eCollection 2018. PubMed PMID: 29698436. 20: Monte JR, Laurito-Friend DF, Ferraz A, Milagres AMF. Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids. Biotechnol Prog. 2018 Apr 26. doi: 10.1002/btpr.2647. [Epub ahead of print] PubMed PMID: 29696824.