MedKoo Cat#: 562497 | Name: Rhododendrol
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Rhododendrol is an inhibitor of melanin synthesis developed for lightening/whitening cosmetics. It acts by preventing high-fat diet-induced elevation in body weight and increasing lipolysis in white adipocytes in male mice.

Chemical Structure

Rhododendrol
Rhododendrol
CAS#501-96-2 (R-isomer)

Theoretical Analysis

MedKoo Cat#: 562497

Name: Rhododendrol

CAS#: 501-96-2 (R-isomer)

Chemical Formula: C10H14O2

Exact Mass: 166.0994

Molecular Weight: 166.22

Elemental Analysis: C, 72.26; H, 8.49; O, 19.25

Price and Availability

Size Price Availability Quantity
25mg USD 450.00 2 Weeks
50mg USD 750.00 2 Weeks
100mg USD 1,250.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Synonym
Rhododendrol; Betuligenol, Frambinol;
IUPAC/Chemical Name
4-[(3R)-3-Hydroxybutyl]phenol
InChi Key
SFUCGABQOMYVJW-MRVPVSSYSA-N
InChi Code
InChI=1S/C10H14O2/c1-8(11)2-3-9-4-6-10(12)7-5-9/h4-8,11-12H,2-3H2,1H3/t8-/m1/s1
SMILES Code
OC1=CC=C(CC[C@H](O)C)C=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info

Preparing Stock Solutions

The following data is based on the product molecular weight 166.22 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
1: Goto N, Tsujimoto M, Nagai H, Masaki T, Ito S, Wakamatsu K, Nishigori C. 4-(4-Hydroxyphenyl)-2-butanol (rhododendrol)-induced melanocyte cytotoxicity is enhanced by UVB exposure through generation of oxidative stress. Exp Dermatol. 2018 Apr 6. doi: 10.1111/exd.13555. [Epub ahead of print] PubMed PMID: 29630780. 2: Ito S, Agata M, Okochi K, Wakamatsu K. The potent pro-oxidant activity of rhododendrol-eumelanin is enhanced by ultraviolet A radiation. Pigment Cell Melanoma Res. 2018 Feb 23. doi: 10.1111/pcmr.12696. [Epub ahead of print] PubMed PMID: 29474003. 3: Ito S, Wakamatsu K. Biochemical Mechanism of Rhododendrol-Induced Leukoderma. Int J Mol Sci. 2018 Feb 12;19(2). pii: E552. doi: 10.3390/ijms19020552. Review. PubMed PMID: 29439519; PubMed Central PMCID: PMC5855774. 4: Watabe A, Yamasaki K, Asano M, Kanbayashi Y, Nasu-Tamabuchi M, Terui H, Furudate S, Kakizaki A, Tsuchiyama K, Kimura Y, Ito Y, Kikuchi K, Aiba S. Efficacy of oral cholecalciferol on rhododendrol-induced vitiligo: A blinded randomized clinical trial. J Dermatol. 2018 Feb 5. doi: 10.1111/1346-8138.14244. [Epub ahead of print] PubMed PMID: 29399865. 5: Hayashi M, Okamura K, Araki Y, Suzuki M, Tanaka T, Abe Y, Nakano S, Yoshizawa J, Hozumi Y, Inoie M, Suzuki T. Spectrophotometer is useful for assessing vitiligo and chemical leukoderma severity by quantifying color difference with surrounding normally pigmented skin. Skin Res Technol. 2017 Oct 22. doi: 10.1111/srt.12410. [Epub ahead of print] PubMed PMID: 29057565. 6: Miyaji A, Gabe Y, Kohno M, Baba T. Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol. J Clin Biochem Nutr. 2017 Mar;60(2):86-92. doi: 10.3164/jcbn.16-38. Epub 2016 Oct 5. PubMed PMID: 28366986; PubMed Central PMCID: PMC5370526. 7: Harris JE. Chemical-Induced Vitiligo. Dermatol Clin. 2017 Apr;35(2):151-161. doi: 10.1016/j.det.2016.11.006. Review. PubMed PMID: 28317525; PubMed Central PMCID: PMC5362111. 8: Ito S, Hinoshita M, Suzuki E, Ojika M, Wakamatsu K. Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (E)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity. Chem Res Toxicol. 2017 Mar 20;30(3):859-868. doi: 10.1021/acs.chemrestox.7b00006. Epub 2017 Mar 6. PubMed PMID: 28219012. 9: Ito S, Okura M, Wakamatsu K, Yamashita T. The potent pro-oxidant activity of rhododendrol-eumelanin induces cysteine depletion in B16 melanoma cells. Pigment Cell Melanoma Res. 2017 Jan;30(1):63-67. doi: 10.1111/pcmr.12556. PubMed PMID: 28132436. 10: Yoshikawa M, Sumikawa Y, Hida T, Kamiya T, Kase K, Ishii-Osai Y, Kato J, Kan Y, Kamiya S, Sato Y, Yamashita T. Clinical and epidemiological analysis in 149 cases of rhododendrol-induced leukoderma. J Dermatol. 2017 May;44(5):582-587. doi: 10.1111/1346-8138.13694. Epub 2016 Nov 24. PubMed PMID: 27882588. 11: Hayashi M, Okamura K, Araki Y, Suzuki M, Tanaka T, Abe Y, Nakano S, Yoshizawa J, Hozumi Y, Inoie M, Suzuki T. A novel three dimensional imaging method for the measurement of area in vitiligo and chemical leukoderma. J Dermatol Sci. 2016 Nov;84(2):219-221. doi: 10.1016/j.jdermsci.2016.08.532. Epub 2016 Aug 24. PubMed PMID: 27576766. 12: Kondo M, Kawabata K, Sato K, Yamaguchi S, Hachiya A, Takahashi Y, Inoue S. Glutathione maintenance is crucial for survival of melanocytes after exposure to rhododendrol. Pigment Cell Melanoma Res. 2016 Sep;29(5):541-9. doi: 10.1111/pcmr.12494. Epub 2016 Jul 1. PubMed PMID: 27223685. 13: Arase N, Yang L, Tanemura A, Yang F, Suenaga T, Arase H, Katayama I. The effect of rhododendrol inhibition of NF-κB on melanocytes in the presence of tyrosinase. J Dermatol Sci. 2016 Aug;83(2):157-9. doi: 10.1016/j.jdermsci.2016.05.002. Epub 2016 May 3. PubMed PMID: 27174091. 14: Inoue M, Kikuchi K, Watabe A, Yamasaki K, Aiba S. The spectrophotometrical analysis of rhododendrol-induced leucoderma using a novel multispectral camera. Br J Dermatol. 2016 Aug;175(2):334-9. doi: 10.1111/bjd.14548. Epub 2016 Jul 10. PubMed PMID: 26991967. 15: Hagiwara K, Okura M, Sumikawa Y, Hida T, Kuno A, Horio Y, Yamashita T. Biochemical effects of the flavanol-rich lychee fruit extract on the melanin biosynthesis and reactive oxygen species. J Dermatol. 2016 Oct;43(10):1174-1183. doi: 10.1111/1346-8138.13326. PubMed PMID: 26970333. 16: Kim M, Baek HS, Lee M, Park H, Shin SS, Choi DW, Lim KM. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45. Toxicol In Vitro. 2016 Apr;32:339-46. doi: 10.1016/j.tiv.2016.02.003. Epub 2016 Feb 8. PubMed PMID: 26867644. 17: Okubo A, Yasuhira S, Shibazaki M, Takahashi K, Akasaka T, Masuda T, Maesawa C. NAD(P)H dehydrogenase, quinone 1 (NQO1), protects melanin-producing cells from cytotoxicity of rhododendrol. Pigment Cell Melanoma Res. 2016 May;29(3):309-16. doi: 10.1111/pcmr.12461. Epub 2016 Mar 4. PubMed PMID: 26847926. 18: Nishimaki-Mogami T. [Leukoderma caused by chemicals: mechanisms underlying 4-alkyl/aryl-substituted phenols- and rhododendrol-induced melanocyte loss]. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku. 2015;(133):13-20. Review. Japanese. PubMed PMID: 26821466. 19: Takagi R, Kawano M, Nakamura K, Tsuchida T, Matsushita S. T-Cell Responses to Tyrosinase-Derived Self-Peptides in Patients with Leukoderma Induced by Rhododendrol: Implications for Immunotherapy Targeting Melanoma. Dermatology. 2016;232(1):44-9. doi: 10.1159/000441217. Epub 2015 Nov 28. PubMed PMID: 26613259. 20: Abe Y, Okamura K, Kawaguchi M, Hozumi Y, Aoki H, Kunisada T, Ito S, Wakamatsu K, Matsunaga K, Suzuki T. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin. J Dermatol Sci. 2016 Jan;81(1):35-43. doi: 10.1016/j.jdermsci.2015.10.011. Epub 2015 Oct 27. PubMed PMID: 26547111.