MedKoo Cat#: 329890 | Name: Ribostamycin sulfate
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Ribostamycin sulfate, also known as Landamycine, is an aminoglycoside-aminocyclitol antibiotic isolated from a streptomycete, Streptomyces ribosidificus, originally identified in a soil sample from Tsu City of Mie Prefecture in Japan. It is made up of 3 ring subunits: 2-deoxystreptamine (DOS), neosamine C, and ribose. Ribostamycin, along with other aminoglycosides with the DOS subunit, is an important broad-spectrum antibiotic with important use against human immunodeficiency virus and is considered a critically important antimicrobial by the World Health Organization., Resistance against aminoglycoside antibiotics, such as ribostamycin, is a growing concern. The resistant bacteria contain enzymes that modify the structure through phosphorylation, adenylation, and acetylation and prevent the antibiotic from being able to interact with the bacterial ribosomal RNAs.

Chemical Structure

Ribostamycin sulfate
Ribostamycin sulfate
CAS#53797-35-6 (sulfate)

Theoretical Analysis

MedKoo Cat#: 329890

Name: Ribostamycin sulfate

CAS#: 53797-35-6 (sulfate)

Chemical Formula: C17H36N4O14S

Exact Mass: 0.0000

Molecular Weight: 552.55

Elemental Analysis: C, 36.95; H, 6.57; N, 10.14; O, 40.54; S, 5.80

Price and Availability

Size Price Availability Quantity
250mg USD 450.00
1g USD 1,150.00
Bulk Inquiry
Buy Now
Add to Cart
Synonym
Ribostamycin sulfate; Landamycine, Riboflavine sulfate; Ribomycine; Ribostamin; SF 733 antibioic sulfate.
IUPAC/Chemical Name
(2R,3S,4R,5R,6R)-5-amino-2-(aminomethyl)-6-(((1R,2R,3S,4R,6S)-4,6-diamino-2-(((2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-3-hydroxycyclohexyl)oxy)tetrahydro-2H-pyran-3,4-diol sulfate
InChi Key
RTCDDYYZMGGHOE-YMSVYGIHSA-N
InChi Code
InChI=1S/C17H34N4O10.H2O4S/c18-2-6-10(24)12(26)8(21)16(28-6)30-14-5(20)1-4(19)9(23)15(14)31-17-13(27)11(25)7(3-22)29-17;1-5(2,3)4/h4-17,22-27H,1-3,18-21H2;(H2,1,2,3,4)/t4-,5+,6-,7-,8-,9+,10-,11-,12-,13-,14-,15-,16-,17+;/m1./s1
SMILES Code
NC[C@H]1O[C@@H]([C@@H]([C@H]([C@@H]1O)O)N)O[C@@H]2[C@H](C[C@H]([C@@H]([C@H]2O[C@@H]3O[C@@H]([C@H]([C@H]3O)O)CO)O)N)N.OS(=O)(O)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Ribostamycin binds to the bacterial 30S and 50S ribosomal subunit, which inhibits the translocation of the peptidyl-tRNA from the A-site to the P-site. This causes misreading of mRNA which makes bacteria unable to make essential proteins. It also inhibits the chaperone activity of protein disulfide isomerase (PDI).
In vitro activity:
The minimum inhibitory concentration (MIC) of ribostamycin against three different Escherichia coli strains is in the range of 0.9-7.2 μM and against a strain of Haemophilus influenzae is 0.5 μM. This study also found that the MIC of ribostamycin was considerably enhanced from 57.2 to 7.2 μM when bacteria were treated with a combination of ribostamycin and ethylenediaminetetraacetic acid. Reference: Front Microbiol. 2020 Jul 29;11:1718. https://pubmed.ncbi.nlm.nih.gov/32849365/
In vivo activity:
Ribostamycin caused slightly less nephrotoxicity in rats than kanamycin and far less than dibekacin at an equal dosage of 40 mg/kg per day for 14 days. Reference: Drugs Exp Clin Res. 1989;15(6-7):273-89. https://pubmed.ncbi.nlm.nih.gov/2591299/
Solvent mg/mL mM
Solubility
Water 130.0 235.27
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 552.55 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Kong J, Wu ZX, Wei L, Chen ZS, Yoganathan S. Exploration of Antibiotic Activity of Aminoglycosides, in Particular Ribostamycin Alone and in Combination With Ethylenediaminetetraacetic Acid Against Pathogenic Bacteria. Front Microbiol. 2020 Jul 29;11:1718. doi: 10.3389/fmicb.2020.01718. PMID: 32849365; PMCID: PMC7403490. 2. Hunfeld KP, Weigand J, Wichelhaus TA, Kekoukh E, Kraiczy P, Brade V. In vitro activity of mezlocillin, meropenem, aztreonam, vancomycin, teicoplanin, ribostamycin and fusidic acid against Borrelia burgdorferi. Int J Antimicrob Agents. 2001 Mar;17(3):203-8. doi: 10.1016/s0924-8579(00)00342-3. PMID: 11282265. 3. Kitasato I, Niizato T, Inouye S. Comparative nephrotoxicity of ribostamycin and gentamicin in rats evaluated by urinalysis. Drugs Exp Clin Res. 1989;15(6-7):273-89. PMID: 2591299.
In vitro protocol:
1. Kong J, Wu ZX, Wei L, Chen ZS, Yoganathan S. Exploration of Antibiotic Activity of Aminoglycosides, in Particular Ribostamycin Alone and in Combination With Ethylenediaminetetraacetic Acid Against Pathogenic Bacteria. Front Microbiol. 2020 Jul 29;11:1718. doi: 10.3389/fmicb.2020.01718. PMID: 32849365; PMCID: PMC7403490. 2. Hunfeld KP, Weigand J, Wichelhaus TA, Kekoukh E, Kraiczy P, Brade V. In vitro activity of mezlocillin, meropenem, aztreonam, vancomycin, teicoplanin, ribostamycin and fusidic acid against Borrelia burgdorferi. Int J Antimicrob Agents. 2001 Mar;17(3):203-8. doi: 10.1016/s0924-8579(00)00342-3. PMID: 11282265.
In vivo protocol:
1. Kitasato I, Niizato T, Inouye S. Comparative nephrotoxicity of ribostamycin and gentamicin in rats evaluated by urinalysis. Drugs Exp Clin Res. 1989;15(6-7):273-89. PMID: 2591299.
1: Zachman-Brockmeyer TR, Thoden JB, Holden HM. The structure of RbmB from Streptomyces ribosidificus, an aminotransferase involved in the biosynthesis of ribostamycin. Protein Sci. 2017 Sep;26(9):1886-1892. doi: 10.1002/pro.3221. Epub 2017 Jul 23. PubMed PMID: 28685903; PubMed Central PMCID: PMC5563144. 2: Tang M, Dou X, Wang C, Tian Z, Yang M, Zhang Y. Abundance and distribution of antibiotic resistance genes in a full-scale anaerobic-aerobic system alternately treating ribostamycin, spiramycin and paromomycin production wastewater. Environ Geochem Health. 2017 Dec;39(6):1595-1605. doi: 10.1007/s10653-017-9987-5. Epub 2017 May 27. PubMed PMID: 28551881. 3: Kurumbang NP, Liou K, Sohng JK. Biosynthesis of ribostamycin derivatives by reconstitution and heterologous expression of required gene sets. Appl Biochem Biotechnol. 2011 Feb;163(3):373-82. doi: 10.1007/s12010-010-9045-6. Epub 2010 Jul 31. PubMed PMID: 20676801. 4: Kurumbang NP, Park JW, Yoon YJ, Liou K, Sohng JK. Heterologous production of ribostamycin derivatives in engineered Escherichia coli. Res Microbiol. 2010 Sep;161(7):526-33. doi: 10.1016/j.resmic.2010.04.013. Epub 2010 Jun 16. PubMed PMID: 20561584. 5: Schmidtke SR, Duchardt-Ferner E, Weigand JE, Suess B, Wöhnert J. NMR resonance assignments of an engineered neomycin-sensing riboswitch RNA bound to ribostamycin and tobramycin. Biomol NMR Assign. 2010 Apr;4(1):115-8. doi: 10.1007/s12104-010-9223-z. Epub 2010 Mar 21. PubMed PMID: 20306311. 6: Revuelta J, Vacas T, Corzana F, Gonzalez C, Bastida A, Asensio JL. Structure-based design of highly crowded ribostamycin/kanamycin hybrids as a new family of antibiotics. Chemistry. 2010 Mar 8;16(10):2986-91. doi: 10.1002/chem.200903003. PubMed PMID: 20162651. 7: Kudo F, Kawashima T, Yokoyama K, Eguchi T. Enzymatic preparation of neomycin C from ribostamycin. J Antibiot (Tokyo). 2009 Nov;62(11):643-6. doi: 10.1038/ja.2009.88. Epub 2009 Aug 28. PubMed PMID: 19713992. 8: Nepal KK, Oh TJ, Subba B, Yoo JC, Sohng JK. Characterization of RbmD (glycosyltransferase in ribostamycin gene cluster) through neomycin production reconstituted from the engineered Streptomyces fradiae BS1. Mol Cells. 2009 Jan 31;27(1):83-8. doi: 10.1007/s10059-009-0008-0. Epub 2008 Oct 16. PubMed PMID: 19214437. 9: Lee SW, Han JY, Choi JS, Chung JH, Kim MY, Yang JH, Koong MK, Nava-Ocampo AA, Koren G. Pregnancy outcome of women inadvertently exposed to ribostamycin during early pregnancy: a prospective cohort study. Reprod Toxicol. 2009 Apr;27(2):196-8. doi: 10.1016/j.reprotox.2008.12.008. Epub 2008 Dec 31. PubMed PMID: 19162171. 10: Subba B, Kharel MK, Lee HC, Liou K, Kim BG, Sohng JK. The ribostamycin biosynthetic gene cluster in Streptomyces ribosidificus: comparison with butirosin biosynthesis. Mol Cells. 2005 Aug 31;20(1):90-6. PubMed PMID: 16258246. 11: Lee YD, Cho Y, Han MS. Anaphylaxis due to ribostamycin. Allergy. 2004 Oct;59(10):1134-5. PubMed PMID: 15355481. 12: Horibe T, Nagai H, Sakakibara K, Hagiwara Y, Kikuchi M. Ribostamycin inhibits the chaperone activity of protein disulfide isomerase. Biochem Biophys Res Commun. 2001 Dec 21;289(5):967-72. PubMed PMID: 11741285. 13: Hunfeld KP, Weigand J, Wichelhaus TA, Kekoukh E, Kraiczy P, Brade V. In vitro activity of mezlocillin, meropenem, aztreonam, vancomycin, teicoplanin, ribostamycin and fusidic acid against Borrelia burgdorferi. Int J Antimicrob Agents. 2001 Mar;17(3):203-8. PubMed PMID: 11282265. 14: Zhou SL, Shen G, Zhong HF. Pharmacokinetics of ribostamycin in paediatric patients. Clin Pharmacokinet. 1992 Feb;22(2):144-51. PubMed PMID: 1551291. 15: Zhu ZF, Ma TX. [Influence of carbenicillin on pharmacokinetics of ribostamycin in 7 volunteers when they were used combinedly]. Zhongguo Yao Li Xue Bao. 1991 May;12(3):229-31. Chinese. PubMed PMID: 1781284. 16: Kitasato I, Yokota M, Inouye S, Igarashi M. Comparative ototoxicity of ribostamycin, dactimicin, dibekacin, kanamycin, amikacin, tobramycin, gentamicin, sisomicin and netilmicin in the inner ear of guinea pigs. Chemotherapy. 1990;36(2):155-68. PubMed PMID: 2311443. 17: Puig LL, Abadias M, Alomar A. Erythroderma due to ribostamycin. Contact Dermatitis. 1989 Aug;21(2):79-82. PubMed PMID: 2530055. 18: Inouye S, Watanabe T, Kitasato I. Comparative antimicrobial activities of ribostamycin, gentamicin, ampicillin and lincomycin in vitro and in vivo. Drugs Exp Clin Res. 1989;15(10):465-76. PubMed PMID: 2632215. 19: Kitasato I, Niizato T, Inouye S. Comparative nephrotoxicity of ribostamycin and gentamicin in rats evaluated by urinalysis. Drugs Exp Clin Res. 1989;15(6-7):273-89. PubMed PMID: 2591299. 20: Hoshiko S, Nojiri C, Matsunaga K, Katsumata K, Satoh E, Nagaoka K. Nucleotide sequence of the ribostamycin phosphotransferase gene and of its control region in Streptomyces ribosidificus. Gene. 1988 Sep 7;68(2):285-96. PubMed PMID: 2851496.