MedKoo Cat#: 561591 | Name: Riboflavin Sodium Phosphate
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Riboflavin Sodium Phosphate is a coenzyme for a number of oxidative enzymes including NADH dehydrogenase.

Chemical Structure

Riboflavin Sodium Phosphate
Riboflavin Sodium Phosphate
CAS#130-40-5

Theoretical Analysis

MedKoo Cat#: 561591

Name: Riboflavin Sodium Phosphate

CAS#: 130-40-5

Chemical Formula: C17H20N4NaO9P

Exact Mass: 0.0000

Molecular Weight: 478.32

Elemental Analysis: C, 42.69; H, 4.21; N, 11.71; Na, 4.81; O, 30.10; P, 6.48

Price and Availability

Size Price Availability Quantity
5g USD 250.00 2 weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Riboflavin Sodium Phosphate; Hyryl; Flavin mononucleotide; Riboflavin 5-phosphate sodium;
IUPAC/Chemical Name
Sodium [(2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate
InChi Key
OHSHFZJLPYLRIP-BMZHGHOISA-M
InChi Code
InChI=1S/C17H21N4O9P.Na/c1-7-3-9-10(4-8(7)2)21(15-13(18-9)16(25)20-17(26)19-15)5-11(22)14(24)12(23)6-30-31(27,28)29;/h3-4,11-12,14,22-24H,5-6H2,1-2H3,(H,20,25,26)(H2,27,28,29);/q;+1/p-1/t11-,12+,14-;/m0./s1
SMILES Code
O=P(OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C2=CC(C)=C(C)C=C2N=C3C(NC(N=C13)=O)=O)([O-])O.[Na+]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Riboflavin is a precursor of the coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These coenzymes are of vital importance in normal tissue respiration, pyridoxine activation, tryptophan to niacin conversion, fat, carbohydrate, and protein metabolism, and glutathione reductase mediated detoxification. Riboflavin may also be involved in maintaining erythrocyte integrity. This vitamin is essential for healthy skin, nails, and hair.
In vitro activity:
In the HepG2 cell line, riboflavin deficiency induces cell apoptosis by triggering ER stress and the CHOP pathway. Riboflavin deficiency inhibited cell proliferation and caused ER stress, increased the expression of ER stress markers, increased the cell apoptosis rate, enhanced the expression of proapoptotic markers, and decreased the expression of the antiapoptotic marker. Reference: Nutrients. 2022 Aug 16;14(16):3356. https://pubmed.ncbi.nlm.nih.gov/36014863/
In vivo activity:
In an arsenic-injured rat model, it was revealed that riboflavin supplementation protected testicular structures against As2O3-induced injury via a dual inhibition of oxidative changes and a regulation of the PINK1-mediated pathway. Exposure to riboflavin led to a significant decrease of the expression levels of mitophagy related genes. Reference: Physiol Res. 2021 Aug 31;70(4):591-603. https://pubmed.ncbi.nlm.nih.gov/34062077/
Solvent mg/mL mM
Solubility
DMSO 1.0 2.09
Water 20.8 43.55
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 478.32 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Zhang B, Cao JT, Wu YB, Gao KX, Xie M, Zhou ZK, Tang J, Hou SS. Riboflavin (Vitamin B2) Deficiency Induces Apoptosis Mediated by Endoplasmic Reticulum Stress and the CHOP Pathway in HepG2 Cells. Nutrients. 2022 Aug 16;14(16):3356. doi: 10.3390/nu14163356. PMID: 36014863; PMCID: PMC9414855. 2. Long L, Pang XX, Zeng FM, Zhan XH, Xie YH, Pan F, Wang W, Liao LD, Xu XE, Li B, Wang LD, Chang ZJ, Li EM, Xu LY. Promotion of rs3746804 (p. L267P) polymorphism to intracellular SLC52A3a trafficking and riboflavin transportation in esophageal cancer cells. Amino Acids. 2021 Aug;53(8):1197-1209. doi: 10.1007/s00726-021-03025-4. Epub 2021 Jul 5. PMID: 34223992. 3. Olfati A, Tvrda E. Riboflavin recovery of spermatogenic dysfunction via a dual inhibition of oxidative changes and regulation of the PINK1-mediated pathway in arsenic-injured rat model. Physiol Res. 2021 Aug 31;70(4):591-603. doi: 10.33549/physiolres.934658. Epub 2021 Jun 1. PMID: 34062077; PMCID: PMC8820542. 4. Alhazza IM, Hassan I, Ebaid H, Al-Tamimi J, Alwasel SH. Chemopreventive effect of riboflavin on the potassium bromate-induced renal toxicity in vivo. Naunyn Schmiedebergs Arch Pharmacol. 2020 Dec;393(12):2355-2364. doi: 10.1007/s00210-020-01938-7. Epub 2020 Jul 14. PMID: 32666286.
In vitro protocol:
1. Zhang B, Cao JT, Wu YB, Gao KX, Xie M, Zhou ZK, Tang J, Hou SS. Riboflavin (Vitamin B2) Deficiency Induces Apoptosis Mediated by Endoplasmic Reticulum Stress and the CHOP Pathway in HepG2 Cells. Nutrients. 2022 Aug 16;14(16):3356. doi: 10.3390/nu14163356. PMID: 36014863; PMCID: PMC9414855. 2. Long L, Pang XX, Zeng FM, Zhan XH, Xie YH, Pan F, Wang W, Liao LD, Xu XE, Li B, Wang LD, Chang ZJ, Li EM, Xu LY. Promotion of rs3746804 (p. L267P) polymorphism to intracellular SLC52A3a trafficking and riboflavin transportation in esophageal cancer cells. Amino Acids. 2021 Aug;53(8):1197-1209. doi: 10.1007/s00726-021-03025-4. Epub 2021 Jul 5. PMID: 34223992.
In vivo protocol:
1. Olfati A, Tvrda E. Riboflavin recovery of spermatogenic dysfunction via a dual inhibition of oxidative changes and regulation of the PINK1-mediated pathway in arsenic-injured rat model. Physiol Res. 2021 Aug 31;70(4):591-603. doi: 10.33549/physiolres.934658. Epub 2021 Jun 1. PMID: 34062077; PMCID: PMC8820542. 2. Alhazza IM, Hassan I, Ebaid H, Al-Tamimi J, Alwasel SH. Chemopreventive effect of riboflavin on the potassium bromate-induced renal toxicity in vivo. Naunyn Schmiedebergs Arch Pharmacol. 2020 Dec;393(12):2355-2364. doi: 10.1007/s00210-020-01938-7. Epub 2020 Jul 14. PMID: 32666286.
1: Shen K, Huang XE. Clinical investigation in effect of riboflavin sodium phosphate on prevention and treatment for patients with radiotherapy related esophagitis. Asian Pac J Cancer Prev. 2015;16(4):1525-7. PubMed PMID: 25743825. 2: Genina N, Fors D, Vakili H, Ihalainen P, Pohjala L, Ehlers H, Kassamakov I, Haeggström E, Vuorela P, Peltonen J, Sandler N. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci. 2012 Oct 9;47(3):615-23. doi: 10.1016/j.ejps.2012.07.020. Epub 2012 Aug 9. PubMed PMID: 22902482. 3: Kanellopoulos AJ, Binder PS. Management of corneal ectasia after LASIK with combined, same-day, topography-guided partial transepithelial PRK and collagen cross-linking: the athens protocol. J Refract Surg. 2011 May;27(5):323-31. doi: 10.3928/1081597X-20101105-01. Epub 2010 Nov 5. PubMed PMID: 21117539. 4: Genina N, Räikkönen H, Antikainen O, Heinämäki J, Yliruusi J. Ultrasound-assisted powder-coating technique to improve content uniformity of low-dose solid dosage forms. AAPS PharmSciTech. 2010 Sep;11(3):1320-7. doi: 10.1208/s12249-010-9514-9. Epub 2010 Aug 21. PubMed PMID: 20730575; PubMed Central PMCID: PMC2974109. 5: Zhang AY, Fan TY. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology]. Beijing Da Xue Xue Bao Yi Xue Ban. 2009 Dec 18;41(6):682-6. Chinese. PubMed PMID: 20019781. 6: Poelvoorde N, Verstraelen H, Verhelst R, Saerens B, De Backer E, dos Santos Santiago GL, Vervaet C, Vaneechoutte M, De Boeck F, Van Bortel L, Temmerman M, Remon JP. In vivo evaluation of the vaginal distribution and retention of a multi-particulate pellet formulation. Eur J Pharm Biopharm. 2009 Oct;73(2):280-4. doi: 10.1016/j.ejpb.2009.06.005. Epub 2009 Jun 12. PubMed PMID: 19524668. 7: Pajander J, Soikkeli AM, Korhonen O, Forbes RT, Ketolainen J. Drug release phenomena within a hydrophobic starch acetate matrix: FTIR mapping of tablets after in vitro dissolution testing. J Pharm Sci. 2008 Aug;97(8):3367-78. PubMed PMID: 18085712. 8: Cosijns A, Vervaet C, Luyten J, Mullens S, Siepmann F, Van Hoorebeke L, Masschaele B, Cnudde V, Remon JP. Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur J Pharm Biopharm. 2007 Sep;67(2):498-506. Epub 2007 Feb 28. PubMed PMID: 17407810. 9: Yamato S, Kawakami N, Shimada K, Ono M, Idei N, Itoh Y, Tachikawa E. Sweet potato acid phosphatase immobilized on glutaraldehyde-activated aminopropyl controlled-pore glass: activation, repeated use and enzyme fatigue. Biol Pharm Bull. 2004 Feb;27(2):210-5. PubMed PMID: 14758035. 10: Guo HX, Heinämäki J, Yliruusi J. Diffusion of a freely water-soluble drug in aqueous enteric-coated pellets. AAPS PharmSciTech. 2002;3(2):E16. PubMed PMID: 12916953; PubMed Central PMCID: PMC2750318. 11: Okamoto H, Nakajima T, Ito Y. Simultaneous determination of ingredients in a vitamin-enriched drink by micellar electrokinetic chromatography. J Pharm Biomed Anal. 2002 Oct 15;30(3):815-22. PubMed PMID: 12367707. 12: Guo HX, Heinämäki J, Yliruusi J. Amylopectin as a subcoating material improves the acidic resistance of enteric-coated pellets containing a freely soluble drug. Int J Pharm. 2002 Mar 20;235(1-2):79-86. PubMed PMID: 11879742. 13: Guo HX, Heinämäki J, Yliruusi J. Characterization of particle deformation during compression measured by confocal laser scanning microscopy. Int J Pharm. 1999 Sep 20;186(2):99-108. PubMed PMID: 10486427. 14: Maeda Y, Yamamoto M, Owada K, Sato S, Masui T, Nakazawa H. Simultaneous liquid chromatographic determination of water-soluble vitamins, caffeine, and preservative in oral liquid tonics. J Assoc Off Anal Chem. 1989 Mar-Apr;72(2):244-7. PubMed PMID: 2708272.