MedKoo Cat#: 407820 | Name: WZB117
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

WZB117 is a potent Glut1 inhibitor. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Blockade of GLUT1 by WZB117 resensitizes breast cancer cells to adriamycin. WZB117 is a prototype for further development of anticancer therapeutics targeting Glut1-mediated glucose transport and glucose metabolism.

Chemical Structure

WZB117
WZB117
CAS#1223397-11-2

Theoretical Analysis

MedKoo Cat#: 407820

Name: WZB117

CAS#: 1223397-11-2

Chemical Formula: C20H13FO6

Exact Mass: 368.0696

Molecular Weight: 368.32

Elemental Analysis: C, 65.22; H, 3.56; F, 5.16; O, 26.06

Price and Availability

Size Price Availability Quantity
25mg USD 110.00 Ready to ship
50mg USD 180.00 Ready to ship
100mg USD 315.00 Ready to ship
200mg USD 565.00 Ready to ship
500mg USD 1,250.00 Ready to ship
1g USD 2,150.00 2 weeks
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
WZB117; WZB-117; WZB 117
IUPAC/Chemical Name
3-Fluoro-1,2-phenylene bis(3-hydroxybenzoate)
InChi Key
FRSWCCBXIHFKKY-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H13FO6/c21-16-8-3-9-17(26-19(24)12-4-1-6-14(22)10-12)18(16)27-20(25)13-5-2-7-15(23)11-13/h1-11,22-23H
SMILES Code
FC1=C(OC(C2=CC=CC(O)=C2)=O)C(OC(C3=CC=CC(O)=C3)=O)=CC=C1
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Biological target:
WZB117 is a glucose transporter 1 (Glut1) inhibitor, which downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo.
In vitro activity:
WZB117, a prototypic anticancer drug, inhibited human erythrocyte sugar transport by acting as a competitive inhibitor of sugar uptake and as a noncompetitive inhibitor of sugar exit. This suggests that WZB117 and extracellular glucose compete for binding to the same site on the erythrocyte sugar transporter. Molecular docking and ligand binding studies support this hypothesis by showing that extracellular d-glucose and WZB117 binding sites comprise overlapping amino side chains distinct from those involved in binding CB, an inhibitor that acts at the endofacial sugar binding site. Reference: J Biol Chem. 2016 Dec 23; 291(52): 26762–26772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207184/
In vivo activity:
An iCCA PDX model was established to investigate the treatment efficacy of WZB117, a GLUT1 inhibitor. The expression of GLUT1 in the tumors of iCCA patients was first detected (Supplementary Fig. 8a). This study then performed experiments in two selected PDX models with low (PDX#1) and high (PDX#4) GLUT1 levels. The results indicated that WZB117 inhibited the tumor growth of the PDX#4 models but did not inhibit tumor growth in the PDX#1 group (Supplementary Figs. 8b and 9). Accordingly, the results of western blot assays showed that the treatment of tumors with WZB117 resulted in a significant decrease in GLUT1, cyclin D1, and MMP2 in PDX#4 models (Supplementary Fig. 8c). No marked changes were observed in either the body, liver, or spleen weights of the mice in these experiments (Supplementary Fig. 8d–f). Reference: Oncogenesis. 2020 Feb; 9(2): 19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7018977/
Solvent mg/mL mM
Solubility
DMSO 70.0 189.95
DMF 20.0 54.30
Ethanol 39.9 108.45
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 368.32 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Wang Y, Li Q, Liu F, Jin S, Zhang Y, Zhang T, Zhu Y, Zhou Y. Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response. Int J Oral Sci. 2018 Aug 15;10(3):27. doi: 10.1038/s41368-018-0029-7. PMID: 30111835; PMCID: PMC6093892. 2. Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK, Carruthers A. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site. J Biol Chem. 2016 Dec 23;291(52):26762-26772. doi: 10.1074/jbc.M116.759175. Epub 2016 Nov 11. PMID: 27836974; PMCID: PMC5207184. 3. Tiemin P, Peng X, Qingfu L, Yan W, Junlin X, Zhefeng H, Ming Z, Desen L, Qinghui M. Dysregulation of the miR-148a-GLUT1 axis promotes the progression and chemoresistance of human intrahepatic cholangiocarcinoma. Oncogenesis. 2020 Feb 13;9(2):19. doi: 10.1038/s41389-020-0207-2. PMID: 32054829; PMCID: PMC7018977. 4. Shibuya K, Okada M, Suzuki S, Seino M, Seino S, Takeda H, Kitanaka C. Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget. 2015 Jan 20;6(2):651-61. doi: 10.18632/oncotarget.2892. PMID: 25528771; PMCID: PMC4359246.
In vitro protocol:
1. Wang Y, Li Q, Liu F, Jin S, Zhang Y, Zhang T, Zhu Y, Zhou Y. Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response. Int J Oral Sci. 2018 Aug 15;10(3):27. doi: 10.1038/s41368-018-0029-7. PMID: 30111835; PMCID: PMC6093892. 2. Ojelabi OA, Lloyd KP, Simon AH, De Zutter JK, Carruthers A. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site. J Biol Chem. 2016 Dec 23;291(52):26762-26772. doi: 10.1074/jbc.M116.759175. Epub 2016 Nov 11. PMID: 27836974; PMCID: PMC5207184.
In vivo protocol:
1. Tiemin P, Peng X, Qingfu L, Yan W, Junlin X, Zhefeng H, Ming Z, Desen L, Qinghui M. Dysregulation of the miR-148a-GLUT1 axis promotes the progression and chemoresistance of human intrahepatic cholangiocarcinoma. Oncogenesis. 2020 Feb 13;9(2):19. doi: 10.1038/s41389-020-0207-2. PMID: 32054829; PMCID: PMC7018977. 2. Shibuya K, Okada M, Suzuki S, Seino M, Seino S, Takeda H, Kitanaka C. Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget. 2015 Jan 20;6(2):651-61. doi: 10.18632/oncotarget.2892. PMID: 25528771; PMCID: PMC4359246.
1: Qiu SQ, He XF, Liang XL, Shi GY, Zhao ML, Li F, Wu ZY, Tian J, Zhai TT, Du Y. GLUT1 as a generic biomarker enables near-infrared fluorescence molecular imaging guided precise intraoperative tumor detection in breast cancer. Eur J Nucl Med Mol Imaging. 2025 Jan 21. doi: 10.1007/s00259-025-07095-4. Epub ahead of print. PMID: 39833507. 2: Zhang Q, Yuan X, Luan X, Lei T, Li Y, Chu W, Yao Q, Baker PN, Qi H, Li H. GLUT1 exacerbates trophoblast ferroptosis by modulating AMPK/ACC mediated lipid metabolism and promotes gestational diabetes mellitus associated fetal growth restriction. Mol Med. 2024 Dec 20;30(1):257. doi: 10.1186/s10020-024-01028-x. PMID: 39707215; PMCID: PMC11660491. 3: Naghdi A, Oska N, Yumnamcha T, Eltanani S, Shawky M, Me R, Ibrahim AS. The significance of upper glycolytic components in regulating retinal pigment epithelial cellular behavior. Sci Rep. 2024 Aug 14;14(1):18862. doi: 10.1038/s41598-024-68343-5. PMID: 39143171; PMCID: PMC11324787. 4: Peng Y, Xia J, Zhou D, Yang Z, Zeng R, Xu M, Peng H. S100A2 upregulates GLUT1 expression to promote glycolysis in the progression of nasopharyngeal carcinoma. Histol Histopathol. 2024 Dec;39(12):1669-1683. doi: 10.14670/HH-18-778. Epub 2024 Jun 11. PMID: 38940398. 5: Lv Y, Gan S, Chen Z, Luo T, Yang C, Fu L, Lin L, Yao L, Tang H. GLUT1 mediates bronchial epithelial E-cadherin disruption in TDI-induced steroid- insensitive asthma. J Asthma. 2024 Nov;61(11):1571-1580. doi: 10.1080/02770903.2024.2368199. Epub 2024 Jun 24. PMID: 38865204. 6: Zhou Z, Li Y, Chen S, Xie Z, Du Y, Liu Y, Shi Y, Lin X, Zeng X, Zhao H, Chen G. GLUT1 promotes cell proliferation via binds and stabilizes phosphorylated EGFR in lung adenocarcinoma. Cell Commun Signal. 2024 Jun 3;22(1):303. doi: 10.1186/s12964-024-01678-8. PMID: 38831321; PMCID: PMC11145837. 7: Liu S, Wei Y, Liang Y, Du P, Lei P, Yu D, Zhang H. Engineering Nanozymes for Tumor Therapy via Ferroptosis Self-Amplification. Adv Healthc Mater. 2024 Jul;13(19):e2400307. doi: 10.1002/adhm.202400307. Epub 2024 Apr 13. PMID: 38573778. 8: Li J, Li Y, Chen G, Liang Y, Xie J, Zhang S, Zhong K, Jiang T, Yi H, Tang H, Chen X. GLUT1 Promotes NLRP3 Inflammasome Activation of Airway Epithelium in Lipopolysaccharide-Induced Acute Lung Injury. Am J Pathol. 2024 Jul;194(7):1185-1196. doi: 10.1016/j.ajpath.2024.03.003. Epub 2024 Mar 26. PMID: 38548270. 9: Thulasiraman P, Foret M, Pandit R, McAlister K. Curcumin Inhibits the PPARδ- p-Akt-GLUT1 Pathway and Ameliorates the Antiproliferative Effects of Doxorubicin in MDA-MB-231 Cells. Asian Pac J Cancer Prev. 2024 Mar 1;25(3):1035-1043. doi: 10.31557/APJCP.2024.25.3.1035. PMID: 38546086; PMCID: PMC11152400. 10: Huang H, Kung FL, Huang YW, Hsu CC, Guh JH, Hsu LC. Sensitization of cancer cells to paclitaxel-induced apoptosis by canagliflozin. Biochem Pharmacol. 2024 May;223:116140. doi: 10.1016/j.bcp.2024.116140. Epub 2024 Mar 20. PMID: 38513740. 11: Liu Y, Hou Y, Zhang F, Wang X. ENO1 deletion potentiates ferroptosis and decreases glycolysis in colorectal cancer cells via AKT/STAT3 signaling. Exp Ther Med. 2024 Feb 5;27(4):127. doi: 10.3892/etm.2024.12415. PMID: 38414789; PMCID: PMC10895580. 12: Liang Y, Zhang H, Li J, Wang X, Xie J, Li Y, Li J, Qian Y, Zhang H, Wang T, Tang H, Chen X. GLUT1 regulates the release of VEGF-A in the alveolar epithelium of lipopolysaccharide-induced acute lung injury. Cell Biol Int. 2024 Apr;48(4):510-520. doi: 10.1002/cbin.12127. Epub 2024 Jan 15. PMID: 38225684. 13: Geng H, Chen L, Lv S, Li M, Huang X, Li M, Liu C, Liu C. Photochemically Controlled Release of the Glucose Transporter 1 Inhibitor for Glucose Deprivation Responses and Cancer Suppression Research. J Proteome Res. 2024 Feb 2;23(2):653-662. doi: 10.1021/acs.jproteome.3c00469. Epub 2024 Jan 3. PMID: 38170682. 14: Oska N, Eltanani S, Shawky M, Naghdi A, Gregory A, Yumnamcha T, Ibrahim AS. Upper glycolytic components contribute differently in controlling retinal vascular endothelial cellular behavior: Implications for endothelial-related retinal diseases. PLoS One. 2023 Nov 30;18(11):e0294909. doi: 10.1371/journal.pone.0294909. PMID: 38033124; PMCID: PMC10688887. 15: Tang H, Chen Z, Gan S, Liang Y, Zhang H, Yang C, Lin L, Guo Y, Li S, Li J, Yao L. GLUT1 contributes to impaired epithelial tight junction in the late phase of acute lung injury. Eur J Pharmacol. 2023 Dec 15;961:176185. doi: 10.1016/j.ejphar.2023.176185. Epub 2023 Nov 8. PMID: 37944848. 16: Nawrot-Hadzik I, Matkowski A, Fast M, Choromańska A. The combination of pro- oxidative acting vanicosides and GLUT1 inhibitor (WZB117) exerts a synergistic cytotoxic effect against melanoma cells. Fitoterapia. 2023 Dec;171:105702. doi: 10.1016/j.fitote.2023.105702. Epub 2023 Oct 15. PMID: 37848084. 17: Poonprasartporn A, Xiao J, Chan KLA. A study of WZB117 as a competitive inhibitor of glucose transporter in high glucose treated PANC-1 cells by live- cell FTIR spectroscopy. Talanta. 2024 Jan 1;266(Pt 1):125031. doi: 10.1016/j.talanta.2023.125031. Epub 2023 Aug 4. PMID: 37549570. 18: Parrott D, Suh EH, Khalighinejad P, Jordan VC, Arreola I, Lo ST, Sherry AD. Investigations into the Signaling Pathways Involving Glucose-Stimulated Zinc Secretion (GSZS) from Prostate Epithelial Cells In Vitro and In Vivo. Mol Imaging Biol. 2023 Oct;25(5):935-943. doi: 10.1007/s11307-023-01821-w. Epub 2023 Apr 25. PMID: 37097498. 19: Winter J, Kunze R, Veit N, Kuerpig S, Meisenheimer M, Kraus D, Glassmann A, Probstmeier R. Targeting of Glucose Transport and the NAD Pathway in Neuroendocrine Tumor (NET) Cells Reveals New Treatment Options. Cancers (Basel). 2023 Feb 23;15(5):1415. doi: 10.3390/cancers15051415. PMID: 36900207; PMCID: PMC10001048. 20: De A, Wadhwani A, Sauraj, Roychowdhury P, Kang JH, Ko YT, Kuppusamy G. WZB117 Decorated Metformin-Carboxymethyl Chitosan Nanoparticles for Targeting Breast Cancer Metabolism. Polymers (Basel). 2023 Feb 16;15(4):976. doi: 10.3390/polym15040976. PMID: 36850263; PMCID: PMC9962472.