MedKoo Cat#: 329687 | Name: Norepinephrine bitartrate hydrate
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Norepinephrine is an organic chemical in the catecholamine family that functions in the human brain and body as a hormone and neurotransmitter. Norepinephrine directly stimulates adrenergic receptors. Stimulation of alpha-adrenergic receptors causes vasoconstriction of the radial smooth muscle of the iris, arteries, arterioles, veins, urinary bladder, and the sphincter of the gastrointestinal tract. Stimulation of beta-1 adrenergic receptors causes an increase in myocardial contractility, heart rate, automaticity, and atrioventricular (AV) conduction while stimulation of beta-2 adrenergic receptors causes bronchiolar and vascular smooth muscle dilatation.

Chemical Structure

Norepinephrine bitartrate hydrate
Norepinephrine bitartrate hydrate
CAS#108341-18-0 (bitartrate hydrate)

Theoretical Analysis

MedKoo Cat#: 329687

Name: Norepinephrine bitartrate hydrate

CAS#: 108341-18-0 (bitartrate hydrate)

Chemical Formula: C12H19NO10

Exact Mass: 0.0000

Molecular Weight: 337.28

Elemental Analysis: C, 42.73; H, 5.68; N, 4.15; O, 47.44

Price and Availability

Size Price Availability Quantity
5g USD 450.00 2 weeks
10g USD 750.00 2 weeks
25g USD 1,250.00 2 weeks
50g USD 1,950.00 2 weeks
Bulk Inquiry
Buy Now
Add to Cart
Synonym
Norepinephrine bitartrate; Arterenol bitartrate; Levophed; Noradrenalin bitartrate; NSC 169106
IUPAC/Chemical Name
1,2-Benzenediol, 4-((1R)-2-amino-1-hydroxyethyl)-, (2R,3R)-2,3-dihydroxybutanedioate hydrate
InChi Key
LNBCGLZYLJMGKP-LUDZCAPTSA-N
InChi Code
InChI=1S/C8H11NO3.C4H6O6.H2O/c9-4-8(12)5-1-2-6(10)7(11)3-5;5-1(3(7)8)2(6)4(9)10;/h1-3,8,10-12H,4,9H2;1-2,5-6H,(H,7,8)(H,9,10);1H2/t8-;1-,2-;/m01./s1
SMILES Code
OC1=CC=C([C@@H](O)CN)C=C1O.O=C(O)[C@H](O)[C@@H](O)C(O)=O.[H]O[H]
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Norepinephrine (Levarterenol; L-Noradrenaline) bitartrate monohydrate is a potent adrenergic receptor (AR) agonist.
In vitro activity:
In vitro, this study found that norepinephrine inhibited the production of TNF-α, IL-6, and CXCL2/MIP-2 and promoted the secretion of IL-10 from LPS-stimulated murine alveolar macrophages. Blockade of α2A-AR by a specific antagonist further inhibited the production of TNF-α, IL-6, and IL-10. Furthermore, norepinephrine down-regulated NF-κB activation in stimulated alveolar macrophages. Reference: Clin Sci (Lond). 2020 Jul 31;134(14):1957-1971. https://pubmed.ncbi.nlm.nih.gov/32643759/
In vivo activity:
This study investigated the effects of aging-associated formaldehyde (FA) on the inactivation of NE (norepinephrine) in vitro and in vivo, and on memory behaviors in rodents. The results showed that age-related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Unexpectedly, an injection of FA (at a pathological level) or 6-hydroxydopamine (6-OHDA, a NE depletor) can mimic age-related NE deficiency, long-term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age-related deficits in both LTP and memory in aged rats. Reference: Aging Cell. 2015 Aug;14(4):659-68. https://pubmed.ncbi.nlm.nih.gov/25866202/
Solvent mg/mL mM
Solubility
DMF 10.0 29.65
DMSO 40.7 120.57
PBS (pH 7.2) 10.0 29.65
Water 58.5 173.45
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 337.28 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Hatala P, Lajos A, Mackei M, Sebők C, Tráj P, Vörösházi J, Neogrády Z, Mátis G. Feline Uroepithelial Cell Culture as a Novel Model of Idiopathic Cystitis: Investigations on the Effects of Norepinephrine on Inflammatory Response, Oxidative Stress, and Barrier Function. Vet Sci. 2023 Feb 8;10(2):132. doi: 10.3390/vetsci10020132. PMID: 36851436; PMCID: PMC9961545. 2. Cong Z, Li D, Lv X, Yang C, Zhang Q, Wu C, Wang Z, Zhu X. α2A-adrenoceptor deficiency attenuates lipopolysaccharide-induced lung injury by increasing norepinephrine levels and inhibiting alveolar macrophage activation in acute respiratory distress syndrome. Clin Sci (Lond). 2020 Jul 31;134(14):1957-1971. doi: 10.1042/CS20200586. PMID: 32643759. 3. Steinberger KJ, Bailey MT, Gross AC, Sumner LA, Voorhees JL, Crouser N, Curry JM, Wang Y, DeVries AC, Marsh CB, Glaser R, Yang EV, Eubank TD. Stress-induced Norepinephrine Downregulates CCL2 in Macrophages to Suppress Tumor Growth in a Model of Malignant Melanoma. Cancer Prev Res (Phila). 2020 Sep;13(9):747-760. doi: 10.1158/1940-6207.CAPR-19-0370. Epub 2020 Jun 9. PMID: 32518084; PMCID: PMC7607650. 4. Mei Y, Jiang C, Wan Y, Lv J, Jia J, Wang X, Yang X, Tong Z. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell. 2015 Aug;14(4):659-68. doi: 10.1111/acel.12345. Epub 2015 Apr 11. PMID: 25866202; PMCID: PMC4531079.
In vitro protocol:
1. Hatala P, Lajos A, Mackei M, Sebők C, Tráj P, Vörösházi J, Neogrády Z, Mátis G. Feline Uroepithelial Cell Culture as a Novel Model of Idiopathic Cystitis: Investigations on the Effects of Norepinephrine on Inflammatory Response, Oxidative Stress, and Barrier Function. Vet Sci. 2023 Feb 8;10(2):132. doi: 10.3390/vetsci10020132. PMID: 36851436; PMCID: PMC9961545. 2. Cong Z, Li D, Lv X, Yang C, Zhang Q, Wu C, Wang Z, Zhu X. α2A-adrenoceptor deficiency attenuates lipopolysaccharide-induced lung injury by increasing norepinephrine levels and inhibiting alveolar macrophage activation in acute respiratory distress syndrome. Clin Sci (Lond). 2020 Jul 31;134(14):1957-1971. doi: 10.1042/CS20200586. PMID: 32643759.
In vivo protocol:
1. Steinberger KJ, Bailey MT, Gross AC, Sumner LA, Voorhees JL, Crouser N, Curry JM, Wang Y, DeVries AC, Marsh CB, Glaser R, Yang EV, Eubank TD. Stress-induced Norepinephrine Downregulates CCL2 in Macrophages to Suppress Tumor Growth in a Model of Malignant Melanoma. Cancer Prev Res (Phila). 2020 Sep;13(9):747-760. doi: 10.1158/1940-6207.CAPR-19-0370. Epub 2020 Jun 9. PMID: 32518084; PMCID: PMC7607650. 2. Mei Y, Jiang C, Wan Y, Lv J, Jia J, Wang X, Yang X, Tong Z. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell. 2015 Aug;14(4):659-68. doi: 10.1111/acel.12345. Epub 2015 Apr 11. PMID: 25866202; PMCID: PMC4531079.
1: Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: Adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem. 2016 May 10. doi: 10.1111/jnc.13630. [Epub ahead of print] Review. PubMed PMID: 27166428. 2: Wood SK, Valentino RJ. The brain norepinephrine system, stress and cardiovascular vulnerability. Neurosci Biobehav Rev. 2016 Apr 27. pii: S0149-7634(16)30033-1. doi: 10.1016/j.neubiorev.2016.04.018. [Epub ahead of print] Review. PubMed PMID: 27131968. 3: Sadacca BF, Wikenheiser AM, Schoenbaum G. Toward a theoretical role for tonic norepinephrine in the orbitofrontal cortex in facilitating flexible learning. Neuroscience. 2016 Apr 19. pii: S0306-4522(16)30082-3. doi: 10.1016/j.neuroscience.2016.04.017. [Epub ahead of print] Review. PubMed PMID: 27102419. 4: Xing B, Li YC, Gao WJ. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res. 2016 Jan 11. pii: S0006-8993(16)00017-2. doi: 10.1016/j.brainres.2016.01.005. [Epub ahead of print] Review. PubMed PMID: 26790349. 5: Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res. 2016 Jan 25. pii: S0006-8993(16)30010-5. doi: 10.1016/j.brainres.2016.01.033. [Epub ahead of print] Review. PubMed PMID: 26820639. 6: Bradshaw SE, Agster KL, Waterhouse BD, McGaughy JA. Age-related changes in prefrontal norepinephrine transporter density: The basis for improved cognitive flexibility after low doses of atomoxetine in adolescent rats. Brain Res. 2016 Jan 14. pii: S0006-8993(16)00002-0. doi: 10.1016/j.brainres.2016.01.001. [Epub ahead of print] Review. PubMed PMID: 26774596. 7: España RA, Schmeichel BE, Berridge CW. Norepinephrine at the nexus of arousal, motivation and relapse. Brain Res. 2016 Jan 7. pii: S0006-8993(16)00003-2. doi: 10.1016/j.brainres.2016.01.002. [Epub ahead of print] Review. PubMed PMID: 26773688. 8: Moreira CG, Sperandio V. The Epinephrine/Norepinephrine/Autoinducer-3 Interkingdom Signaling System in Escherichia coli O157:H7. Adv Exp Med Biol. 2016;874:247-61. doi: 10.1007/978-3-319-20215-0_12. Review. PubMed PMID: 26589223. 9: Ibey AA, Ciarniello C, Gorelik S. Inadvertent overinfusion of norepinephrine using infusion pump loading dose. Intensive Crit Care Nurs. 2015 Dec;31(6):375-9. doi: 10.1016/j.iccn.2014.12.001. Epub 2015 Sep 9. Review. PubMed PMID: 26364123. 10: Bangasser DA, Wiersielis KR, Khantsis S. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res. 2015 Nov 21. pii: S0006-8993(15)00865-3. doi: 10.1016/j.brainres.2015.11.021. [Epub ahead of print] Review. PubMed PMID: 26607253; PubMed Central PMCID: PMC4875880. 11: Berridge CW, Spencer RC. Differential cognitive actions of norepinephrine a2 and a1 receptor signaling in the prefrontal cortex. Brain Res. 2015 Nov 22. pii: S0006-8993(15)00868-9. doi: 10.1016/j.brainres.2015.11.024. [Epub ahead of print] Review. PubMed PMID: 26592951; PubMed Central PMCID: PMC4876052. 12: Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol. 2015 Nov 2;25(21):R1051-6. doi: 10.1016/j.cub.2015.09.039. Review. PubMed PMID: 26528750. 13: Stahl SM. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine. CNS Spectr. 2015 Oct;20(5):455-9. doi: 10.1017/S1092852915000346. Epub 2015 Jun 30. Review. PubMed PMID: 26122791. 14: Banzi R, Cusi C, Randazzo C, Sterzi R, Tedesco D, Moja L. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) for the prevention of tension-type headache in adults. Cochrane Database Syst Rev. 2015 May 1;5:CD011681. doi: 10.1002/14651858.CD011681. Review. PubMed PMID: 25931277. 15: Pehrson AL, Leiser SC, Gulinello M, Dale E, Li Y, Waller JA, Sanchez C. Treatment of cognitive dysfunction in major depressive disorder--a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. Eur J Pharmacol. 2015 Apr 15;753:19-31. doi: 10.1016/j.ejphar.2014.07.044. Epub 2014 Aug 5. Review. PubMed PMID: 25107284. 16: Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015 Jan;62(1):5-11. doi: 10.1002/pbc.25200. Epub 2014 Aug 30. Review. PubMed PMID: 25175627; PubMed Central PMCID: PMC4237663. 17: Vatta MS, Bianciotti LG, Guil MJ, Hope SI. Regulation of the norepinephrine transporter by endothelins: a potential therapeutic target. Vitam Horm. 2015;98:371-405. doi: 10.1016/bs.vh.2014.12.013. Epub 2015 Mar 3. Review. PubMed PMID: 25817875. 18: Espay AJ, LeWitt PA, Kaufmann H. Norepinephrine deficiency in Parkinson's disease: the case for noradrenergic enhancement. Mov Disord. 2014 Dec;29(14):1710-9. doi: 10.1002/mds.26048. Epub 2014 Oct 9. Review. PubMed PMID: 25297066. 19: Palmer EC, Binns LN, Carey H. Levomilnacipran: A New Serotonin-Norepinephrine Reuptake Inhibitor for the Treatment of Major Depressive Disorder. Ann Pharmacother. 2014 May 8;48(8):1030-1039. [Epub ahead of print] Review. PubMed PMID: 24811398. 20: Aziz MT, Good BL, Lowe DK. Serotonin-norepinephrine reuptake inhibitors for the management of chemotherapy-induced peripheral neuropathy. Ann Pharmacother. 2014 May;48(5):626-32. doi: 10.1177/1060028014525033. Epub 2014 Feb 27. Review. PubMed PMID: 24577146.