MedKoo Cat#: 540184 | Name: Glycitin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Glycitin is a TAS2R agonist found in soy. It suppresses invasive activity of glioma cells, increases proliferation of mouse bone marrow stromal cells and osteoblasts, and inhibits adipocytic transdifferentiation of osteoblasts.

Chemical Structure

Glycitin
Glycitin
CAS#40246-10-4

Theoretical Analysis

MedKoo Cat#: 540184

Name: Glycitin

CAS#: 40246-10-4

Chemical Formula: C22H22O10

Exact Mass: 446.1213

Molecular Weight: 446.41

Elemental Analysis: C, 59.19; H, 4.97; O, 35.84

Price and Availability

Size Price Availability Quantity
25mg USD 250.00 2 Weeks
50mg USD 450.00 2 Weeks
100mg USD 750.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Glycitin; Glycitein 7-O-glucoside; Glycitein 7-O-beta-glucoside; Glycitein-7-beta-O-glucoside
IUPAC/Chemical Name
3-(4-hydroxyphenyl)-6-methoxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one
InChi Key
OZBAVEKZGSOMOJ-MIUGBVLSSA-N
InChi Code
InChI=1S/C22H22O10/c1-29-15-6-12-14(30-9-13(18(12)25)10-2-4-11(24)5-3-10)7-16(15)31-22-21(28)20(27)19(26)17(8-23)32-22/h2-7,9,17,19-24,26-28H,8H2,1H3/t17-,19-,20+,21-,22-/m1/s1
SMILES Code
O=C1C(C2=CC=C(O)C=C2)=COC3=CC(O[C@H]4[C@@H]([C@H]([C@@H]([C@@H](CO)O4)O)O)O)=C(OC)C=C13
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Glycitin promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.
In vitro activity:
As shown in Fig. 3, glycitin increased the proliferation of BMSCs, with statistical significance detected after treatment with 1 and 5 µM glycitin (P=0.0023 and P=0.0004, respectively). Reference: Exp Ther Med. 2016 Nov;12(5):3063-3067. https://pubmed.ncbi.nlm.nih.gov/27882117/
In vivo activity:
These findings indicate that daidzin, glycitin, and genistin are effective in preventing bone loss and the former two compounds are effective in reversing the unfavorable changes of lipid metabolism in this model. It is suggested that the preventive effect of daidzin or glycitin on bone loss in ovx rats is due to suppression of bone turnover, as in the case of estrone, but genistin has a different mechanism of action from the other compounds. Reference: Biol Pharm Bull. 2001 Apr;24(4):368-72. https://pubmed.ncbi.nlm.nih.gov/11305597/
Solvent mg/mL mM
Solubility
DMF 20.0 44.80
DMSO 69.7 156.06
DMSO:PBS (pH 7.2) (1:1) 0.5 1.12
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 446.41 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Zhang L, Chen J, Chai W, Ni M, Sun X, Tian D. Glycitin regulates osteoblasts through TGF-β or AKT signaling pathways in bone marrow stem cells. Exp Ther Med. 2016 Nov;12(5):3063-3067. doi: 10.3892/etm.2016.3696. Epub 2016 Sep 13. PMID: 27882117; PMCID: PMC5103745. 2. Li XH, Zhang JC, Sui SF, Yang MS. Effect of daidzin, genistin, and glycitin on osteogenic and adipogenic differentiation of bone marrow stromal cells and adipocytic transdifferentiation of osteoblasts. Acta Pharmacol Sin. 2005 Sep;26(9):1081-6. doi: 10.1111/j.1745-7254.2005.00161.x. PMID: 16115375. 3. Uesugi T, Toda T, Tsuji K, Ishida H. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. Biol Pharm Bull. 2001 Apr;24(4):368-72. doi: 10.1248/bpb.24.368. PMID: 11305597.
In vitro protocol:
1. Zhang L, Chen J, Chai W, Ni M, Sun X, Tian D. Glycitin regulates osteoblasts through TGF-β or AKT signaling pathways in bone marrow stem cells. Exp Ther Med. 2016 Nov;12(5):3063-3067. doi: 10.3892/etm.2016.3696. Epub 2016 Sep 13. PMID: 27882117; PMCID: PMC5103745. 2. Li XH, Zhang JC, Sui SF, Yang MS. Effect of daidzin, genistin, and glycitin on osteogenic and adipogenic differentiation of bone marrow stromal cells and adipocytic transdifferentiation of osteoblasts. Acta Pharmacol Sin. 2005 Sep;26(9):1081-6. doi: 10.1111/j.1745-7254.2005.00161.x. PMID: 16115375.
In vivo protocol:
1. Uesugi T, Toda T, Tsuji K, Ishida H. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. Biol Pharm Bull. 2001 Apr;24(4):368-72. doi: 10.1248/bpb.24.368. PMID: 11305597.
1: Kim YM, Huh JS, Lim Y, Cho M. Soy Isoflavone Glycitin (4'-Hydroxy-6-Methoxyisoflavone-7-D-Glucoside) Promotes Human Dermal Fibroblast Cell Proliferation and Migration via TGF-β Signaling. Phytother Res. 2015 May;29(5):757-69. doi: 10.1002/ptr.5313. Epub 2015 Mar 11. PubMed PMID: 25758427. 2: Zang Y, Igarashi K, Yu C. Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet. Biosci Biotechnol Biochem. 2015;79(1):117-23. doi: 10.1080/09168451.2014.955453. Epub 2014 Sep 11. PubMed PMID: 25209298. 3: Xu Z, Wu Q, Godber JS. Stabilities of daidzin, glycitin, genistin, and generation of derivatives during heating. J Agric Food Chem. 2002 Dec 4;50(25):7402-6. PubMed PMID: 12452666. 4: Zhang L, Chen J, Chai W, Ni M, Sun X, Tian D. Glycitin regulates osteoblasts through TGF-β or AKT signaling pathways in bone marrow stem cells. Exp Ther Med. 2016 Nov;12(5):3063-3067. Epub 2016 Sep 13. PubMed PMID: 27882117; PubMed Central PMCID: PMC5103745. 5: Li XH, Zhang JC, Sui SF, Yang MS. Effect of daidzin, genistin, and glycitin on osteogenic and adipogenic differentiation of bone marrow stromal cells and adipocytic transdifferentiation of osteoblasts. Acta Pharmacol Sin. 2005 Sep;26(9):1081-6. PubMed PMID: 16115375. 6: Uesugi T, Toda T, Tsuji K, Ishida H. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. Biol Pharm Bull. 2001 Apr;24(4):368-72. PubMed PMID: 11305597. 7: Yeom SJ, Kim BN, Kim YS, Oh DK. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. J Agric Food Chem. 2012 Feb 15;60(6):1535-41. doi: 10.1021/jf204432g. Epub 2012 Feb 1. PubMed PMID: 22251001. 8: Puri A, Panda BP. Simultaneous estimation of glycosidic isoflavones in fermented and unfermented soybeans by TLC-densitometric method. J Chromatogr Sci. 2015 Feb;53(2):338-44. doi: 10.1093/chromsci/bmu045. Epub 2014 May 28. PubMed PMID: 24872524. 9: Gaya P, Peirotén Á, Medina M, Landete JM. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. Int J Food Sci Nutr. 2016;67(2):117-24. doi: 10.3109/09637486.2016.1144724. Epub 2016 Feb 16. PubMed PMID: 26878882. 10: Seo GY, Lim Y, Koh D, Huh JS, Hyun C, Kim YM, Cho M. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med. 2017 Mar 17;49(3):e302. doi: 10.1038/emm.2016.167. PubMed PMID: 28303029; PubMed Central PMCID: PMC5382558. 11: van der Velpen V, Geelen A, Hollman PC, Schouten EG, van 't Veer P, Afman LA. Isoflavone supplement composition and equol producer status affect gene expression in adipose tissue: a double-blind, randomized, placebo-controlled crossover trial in postmenopausal women. Am J Clin Nutr. 2014 Nov;100(5):1269-77. doi: 10.3945/ajcn.114.088484. Epub 2014 Aug 20. PubMed PMID: 25332325. 12: Baú TR, Garcia S, Ida EI. Changes in soymilk during fermentation with kefir culture: oligosaccharides hydrolysis and isoflavone aglycone production. Int J Food Sci Nutr. 2015;66(8):845-50. doi: 10.3109/09637486.2015.1095861. Epub 2015 Oct 12. PubMed PMID: 26460145. 13: Zhang Y, Chang SK. Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk. J Food Sci. 2016 Mar;81(3):C593-9. doi: 10.1111/1750-3841.13236. Epub 2016 Jan 27. PubMed PMID: 26814612. 14: Mulsow K, Eidenschink J, Melzig MF. FT-IR Method for the Quantification of Isoflavonol Glycosides in Nutritional Supplements of Soy (Glycine max (L.) MERR.). Sci Pharm. 2015 Mar 6;83(2):377-86. doi: 10.3797/scipharm.1410-02. Print 2015 Apr-Jun. PubMed PMID: 26839824; PubMed Central PMCID: PMC4727761. 15: Choi JH, Chung MJ, Jeong DY, Oh DH. Immunostimulatory activity of isoflavone-glycosides and ethanol extract from a fermented soybean product in human primary immune cells. J Med Food. 2014 Oct;17(10):1113-21. doi: 10.1089/jmf.2013.3040. Epub 2014 Sep 17. PubMed PMID: 25230138. 16: Quinhone Júnior A, Ida EI. Isoflavones of the soybean components and the effect of germination time in the cotyledons and embryonic axis. J Agric Food Chem. 2014 Aug 20;62(33):8452-9. doi: 10.1021/jf502927m. Epub 2014 Aug 12. PubMed PMID: 25070365. 17: Gaya P, Medina M, Sánchez-Jiménez A, Landete JM. Phytoestrogen Metabolism by Adult Human Gut Microbiota. Molecules. 2016 Aug 9;21(8). pii: E1034. doi: 10.3390/molecules21081034. PubMed PMID: 27517891. 18: Andrade JC, Mandarino JM, Kurozawa LE, Ida EI. The effect of thermal treatment of whole soybean flour on the conversion of isoflavones and inactivation of trypsin inhibitors. Food Chem. 2016 Mar 1;194:1095-101. doi: 10.1016/j.foodchem.2015.08.115. Epub 2015 Sep 3. PubMed PMID: 26471658. 19: Islam MA, Punt A, Spenkelink B, Murk AJ, Rolaf van Leeuwen FX, Rietjens IM. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models. Mol Nutr Food Res. 2014 Mar;58(3):503-15. doi: 10.1002/mnfr.201300390. Epub 2013 Nov 18. PubMed PMID: 24668774. 20: Talaei M, Lee BL, Ong CN, van Dam RM, Yuan JM, Koh WP, Pan A. Urine phyto-oestrogen metabolites are not significantly associated with risk of type 2 diabetes: the Singapore Chinese health study. Br J Nutr. 2016 May;115(9):1607-15. doi: 10.1017/S0007114516000581. Epub 2016 Mar 7. PubMed PMID: 26949260.