MedKoo Cat#: 540181 | Name: Monolaurin
Featured

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Monolaurin, also known as Glyceryl monolaurate, is a surfactant and emulsifer found in coconut oil. It inhibitis growth of Staphylococcus, Streptococcus, Gardnerella, Candida, and Haemophilus, and decreases production of pro-inflammatory cytokines.

Chemical Structure

Monolaurin
Monolaurin
CAS#142-18-7

Theoretical Analysis

MedKoo Cat#: 540181

Name: Monolaurin

CAS#: 142-18-7

Chemical Formula: C15H30O4

Exact Mass: 274.2144

Molecular Weight: 274.40

Elemental Analysis: C, 65.66; H, 11.02; O, 23.32

Price and Availability

Size Price Availability Quantity
5g USD 350.00 2 Weeks
10g USD 550.00 2 Weeks
25g USD 950.00 2 Weeks
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
1-Monolaurin; Glyceryl monolaurate; Lauricidin; L-1475; L1475; L 1475; Glycerol a-monolaurate; 1-Lauroyl-rac-glycerol
IUPAC/Chemical Name
2,3-dihydroxypropyl dodecanoate
InChi Key
ARIWANIATODDMH-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H30O4/c1-2-3-4-5-6-7-8-9-10-11-15(18)19-13-14(17)12-16/h14,16-17H,2-13H2,1H3
SMILES Code
CCCCCCCCCCCC(OCC(O)CO)=O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Product Data
Biological target:
Monolaurin (1-Monolaurin) possesses anti-viral and anti-bacterial activity.
In vitro activity:
In vitro experiments showed that monolaurin inhibited viral replication by up to 80%, while in vivo studies showed that monolaurin reduced clinical manifestations, viral load, and organ damage in SVV-infected piglets. Monolaurin significantly reduced the release of inflammatory cytokines and promoted the release of interferon-γ, which enhanced the viral clearance activity of this type of MCFA. Reference: Front Vet Sci. 2023 Jan 27;10:980187. https://pubmed.ncbi.nlm.nih.gov/36777661/
In vivo activity:
Piglets were orally administrated with ML (monolaurin) at a dose of 100 mg/kg·BW for 7 days before PEDV infection. ML administration promoted the recovery of intestinal villi, thereby improving intestinal function. Meanwhile, PEDV replication was significantly inhibited, and PEDV-induced expression of IL-6 and IL-8 were decreased with ML administration. Reference: Front Immunol. 2022 Jan 13;12:797476. https://pubmed.ncbi.nlm.nih.gov/35095875/
Solvent mg/mL mM
Solubility
DMF 15.0 54.66
DMSO 12.5 45.55
Ethanol 15.0 54.66
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 274.40 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Su B, Wang Y, Jian S, Tang H, Deng H, Zhu L, Zhao X, Liu J, Cheng H, Zhang L, Hu Y, Xu Z. In vitro and in vivo antiviral activity of monolaurin against Seneca Valley virus. Front Vet Sci. 2023 Jan 27;10:980187. doi: 10.3389/fvets.2023.980187. PMID: 36777661; PMCID: PMC9911909. 2. Zhang Q, Yi D, Ji C, Wu T, Wang M, Guo S, Wang L, Zhao D, Hou Y. Monolaurin Confers a Protective Effect Against Porcine Epidemic Diarrhea Virus Infection in Piglets by Regulating the Interferon Pathway. Front Immunol. 2022 Jan 13;12:797476. doi: 10.3389/fimmu.2021.797476. PMID: 35095875; PMCID: PMC8793282. 3. Seleem D, Freitas-Blanco VS, Noguti J, Zancope BR, Pardi V, Murata RM. In Vivo Antifungal Activity of Monolaurin against Candida albicans Biofilms. Biol Pharm Bull. 2018;41(8):1299-1302. doi: 10.1248/bpb.b18-00256. PMID: 30068882.
In vitro protocol:
1. Su B, Wang Y, Jian S, Tang H, Deng H, Zhu L, Zhao X, Liu J, Cheng H, Zhang L, Hu Y, Xu Z. In vitro and in vivo antiviral activity of monolaurin against Seneca Valley virus. Front Vet Sci. 2023 Jan 27;10:980187. doi: 10.3389/fvets.2023.980187. PMID: 36777661; PMCID: PMC9911909.
In vivo protocol:
1. Zhang Q, Yi D, Ji C, Wu T, Wang M, Guo S, Wang L, Zhao D, Hou Y. Monolaurin Confers a Protective Effect Against Porcine Epidemic Diarrhea Virus Infection in Piglets by Regulating the Interferon Pathway. Front Immunol. 2022 Jan 13;12:797476. doi: 10.3389/fimmu.2021.797476. PMID: 35095875; PMCID: PMC8793282. 2. Seleem D, Freitas-Blanco VS, Noguti J, Zancope BR, Pardi V, Murata RM. In Vivo Antifungal Activity of Monolaurin against Candida albicans Biofilms. Biol Pharm Bull. 2018;41(8):1299-1302. doi: 10.1248/bpb.b18-00256. PMID: 30068882.
1: Lester K, Simmonds RS. Zoocin A and lauricidin in combination reduce Streptococcus mutans growth in a multispecies biofilm. Caries Res. 2012;46(3):185-93. doi: 10.1159/000337307. Epub 2012 Apr 13. PubMed PMID: 22508519. 2: Anang DM, Rusul G, Ling FH, Bhat R. Inhibitory effects of lactic acid and lauricidin on spoilage organisms of chicken breast during storage at chilled temperature. Int J Food Microbiol. 2010 Nov 15;144(1):152-9. doi: 10.1016/j.ijfoodmicro.2010.09.014. Epub 2010 Sep 22. PubMed PMID: 20947197. 3: Bozic AK, Anderson RC, Carstens GE, Ricke SC, Callaway TR, Yokoyama MT, Wang JK, Nisbet DJ. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Bioresour Technol. 2009 Sep;100(17):4017-25. doi: 10.1016/j.biortech.2008.12.061. Epub 2009 Apr 11. PubMed PMID: 19362827. 4: Maitani Y, Shimada K, Nagai T. l-Menthol, oleic acid and lauricidin in absorption enhancement of free and sodium salt of diclofenac using ethanol treated silicone membrane as model for skin. Chem Pharm Bull (Tokyo). 1996 Feb;44(2):403-8. PubMed PMID: 8998843. 5: Boddie RL, Nickerson SC. Evaluation of postmilking teat germicides containing Lauricidin, saturated fatty acids, and lactic acid. J Dairy Sci. 1992 Jun;75(6):1725-30. PubMed PMID: 1500569. 6: Dufour M, Simmonds RS, Bremer PJ. Development of a method to quantify in vitro the synergistic activity of "natural" antimicrobials. Int J Food Microbiol. 2003 Aug 25;85(3):249-58. PubMed PMID: 12878383. 7: Goc A, Niedzwiecki A, Rath M. In vitro evaluation of antibacterial activity of phytochemicals and micronutrients against Borrelia burgdorferi and Borrelia garinii. J Appl Microbiol. 2015 Dec;119(6):1561-72. doi: 10.1111/jam.12970. PubMed PMID: 26457476; PubMed Central PMCID: PMC4738477. 8: Seleem D, Chen E, Benso B, Pardi V, Murata RM. In vitro evaluation of antifungal activity of monolaurin against Candida albicans biofilms. PeerJ. 2016 Jun 22;4:e2148. doi: 10.7717/peerj.2148. eCollection 2016. PubMed PMID: 27366648; PubMed Central PMCID: PMC4924139. 9: Dufour M, Simmonds RS, Bremer PJ. Development of a laboratory scale clean-in-place system to test the effectiveness of "natural" antimicrobials against dairy biofilms. J Food Prot. 2004 Jul;67(7):1438-43. PubMed PMID: 15270498. 10: Noll KS, Prichard MN, Khaykin A, Sinko PJ, Chikindas ML. The natural antimicrobial peptide subtilosin acts synergistically with glycerol monolaurate, lauric arginate, and ε-poly-L-lysine against bacterial vaginosis-associated pathogens but not human lactobacilli. Antimicrob Agents Chemother. 2012 Apr;56(4):1756-61. doi: 10.1128/AAC.05861-11. Epub 2012 Jan 17. PubMed PMID: 22252803; PubMed Central PMCID: PMC3318360. 11: Goc A, Niedzwiecki A, Rath M. Cooperation of Doxycycline with Phytochemicals and Micronutrients Against Active and Persistent Forms of Borrelia sp. Int J Biol Sci. 2016 Jul 22;12(9):1093-103. doi: 10.7150/ijbs.16060. eCollection 2016. PubMed PMID: 27570483; PubMed Central PMCID: PMC4997053. 12: Manohar V, Echard B, Perricone N, Ingram C, Enig M, Bagchi D, Preuss HG. In vitro and in vivo effects of two coconut oils in comparison to monolaurin on Staphylococcus aureus: rodent studies. J Med Food. 2013 Jun;16(6):499-503. doi: 10.1089/jmf.2012.0066. PubMed PMID: 23767861. 13: Yoon BK, Jackman JA, Kim MC, Cho NJ. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants. Langmuir. 2015 Sep 22;31(37):10223-32. doi: 10.1021/acs.langmuir.5b02088. Epub 2015 Sep 8. PubMed PMID: 26325618. 14: Mueller EA, Schlievert PM. Non-aqueous glycerol monolaurate gel exhibits antibacterial and anti-biofilm activity against Gram-positive and Gram-negative pathogens. PLoS One. 2015 Mar 23;10(3):e0120280. doi: 10.1371/journal.pone.0120280. eCollection 2015. PubMed PMID: 25799455; PubMed Central PMCID: PMC4370562. 15: Flanagan JL, Khandekar N, Zhu H, Watanabe K, Markoulli M, Flanagan JT, Papas E. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability. Invest Ophthalmol Vis Sci. 2016 Feb;57(2):544-50. doi: 10.1167/iovs.15-17180. PubMed PMID: 26873514. 16: Hess DJ, Henry-Stanley MJ, Wells CL. The Natural Surfactant Glycerol Monolaurate Significantly Reduces Development of Staphylococcus aureus and Enterococcus faecalis Biofilms. Surg Infect (Larchmt). 2015 Oct;16(5):538-42. doi: 10.1089/sur.2014.162. Epub 2015 Jun 25. PubMed PMID: 26110557; PubMed Central PMCID: PMC4593973. 17: Wieland M, Weber BK, Hafner-Marx A, Sauter-Louis C, Bauer J, Knubben-Schweizer G, Metzner M. A controlled trial on the effect of feeding dietary chestnut extract and glycerol monolaurate on liver function in newborn calves. J Anim Physiol Anim Nutr (Berl). 2015 Feb;99(1):190-200. doi: 10.1111/jpn.12179. Epub 2014 Mar 10. PubMed PMID: 24605953. 18: Haase AT, Rakasz E, Schultz-Darken N, Nephew K, Weisgrau KL, Reilly CS, Li Q, Southern PJ, Rothenberger M, Peterson ML, Schlievert PM. Glycerol Monolaurate Microbicide Protection against Repeat High-Dose SIV Vaginal Challenge. PLoS One. 2015 Jun 9;10(6):e0129465. doi: 10.1371/journal.pone.0129465. eCollection 2015. PubMed PMID: 26057743; PubMed Central PMCID: PMC4461171. 19: Tangwatcharin P, Khopaibool P. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus. Southeast Asian J Trop Med Public Health. 2012 Jul;43(4):969-85. PubMed PMID: 23077821. 20: Wakisaka S, Nishimura T, Gohtani S. O/W nano-emulsion formation using an isothermal low-energy emulsification method in a mixture of polyglycerol polyricinoleate and hexaglycerol monolaurate with glycerol system. J Oleo Sci. 2015;64(4):405-13. doi: 10.5650/jos.ess14229. Epub 2015 Mar 11. PubMed PMID: 25766932.