MedKoo Cat#: 540028 | Name: Aristolochic acid A
Featured New

Description:

WARNING: This product is for research use only, not for human or veterinary use.

Aristolochic acid, also known as Aristolochic acid A and AristA, is a carcinogen found in Aristolochia and Radix. It inhibits PLA2 and decreases GABA-induced release of arachidonic acid and phosphatidylcholine. Aristolochic acid A was used in traditional medicines to treat pain. Balkan endemic nephropathy (BEN) is a renal disease associated with AristA consumption

Chemical Structure

Aristolochic acid A
Aristolochic acid A
CAS#313-67-7

Theoretical Analysis

MedKoo Cat#: 540028

Name: Aristolochic acid A

CAS#: 313-67-7

Chemical Formula: C17H11NO7

Exact Mass: 341.0536

Molecular Weight: 341.27

Elemental Analysis: C, 59.83; H, 3.25; N, 4.10; O, 32.82

Price and Availability

Size Price Availability Quantity
100mg USD 150.00 Ready to ship
200mg USD 250.00 Ready to ship
500mg USD 550.00 Ready to ship
1g USD 950.00 Ready to ship
2g USD 1,750.00 Ready to ship
5g USD 3,950.00 2 Weeks
Show More
Bulk Inquiry
Buy Now
Add to Cart
Related CAS #
No Data
Synonym
Aristolochin; Birthwort; NSC-11926; NSC 11926; NSC11926; NSC-50413; NSC50413; NSC 50413; TR-1736; Aristolochic acid I; Aristolochic acid A; Tardolyt ; AristA
IUPAC/Chemical Name
8-methoxy-6-nitrophenanthro[3,4-d][1,3]dioxole-5-carboxylic acid
InChi Key
BBFQZRXNYIEMAW-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H11NO7/c1-23-12-4-2-3-8-9(12)5-11(18(21)22)14-10(17(19)20)6-13-16(15(8)14)25-7-24-13/h2-6H,7H2,1H3,(H,19,20)
SMILES Code
O=C(C1=CC(OCO2)=C2C3=C4C=CC=C(OC)C4=CC([N+]([O-])=O)=C13)O
Appearance
Solid powder
Purity
>98% (or refer to the Certificate of Analysis)
Shipping Condition
Shipped under ambient temperature as non-hazardous chemical. This product is stable enough for a few weeks during ordinary shipping and time spent in Customs.
Storage Condition
Dry, dark and at 0 - 4 C for short term (days to weeks) or -20 C for long term (months to years).
Solubility
Soluble in DMSO
Shelf Life
>2 years if stored properly
Drug Formulation
This drug may be formulated in DMSO
Stock Solution Storage
0 - 4 C for short term (days to weeks), or -20 C for long term (months).
HS Tariff Code
2934.99.9001
More Info
Biological target:
Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities.
In vitro activity:
As shown in Figures 5A and 5B, compared with the control group, the expression of Nrf-2, HO-1, and GPX-4 markedly decreased in the ALI (Aristolactam I, the active metabolite of aristolochic acid) groups in a dose-dependent manner. Fer-1, as a ferroptosis inhibitor by scavenging lipid peroxide, elevated the expression of GPX4 compared with that in the ALI group, but did not affect the levels of Nrf2 and HO-1 (Figures 5C and 5D). SnPP, an HO-1 antagonist, as shown in Figures 5E and 5F, alone could distinctly induce the overexpression of HO-1, and also the co-treatment of ALI and SnPP significantly elevated ALI-downregulated HO-1. But the levels of GPX4 and Nrf2 were both reduced by SnPP co-treatment (Figures 5E and 5F). Reference: Front Pharmacol. 2020; 11: 624529. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873870/
In vivo activity:
The results of the present study showed that renal XOR (xanthine oxidoreductase) activity was enhanced, concomitant with the development of renal dysfunction and fibrosis in an AA (aristolochic acid) nephropathy mouse model. Intriguingly, renal XOR activity was sustainably enhanced even after AA injection, which may be involved in the formation of long‐term renal fibrosis in AA nephropathy. AA is incorporated into tubular epithelial cells via the organic anion transporter 1 (OAT1) channel expressed on the renal tubular basement membrane. After AA administration, cellular cyclin B1 levels increase, reflective of the cell cycle arrest of tubular epithelial cells before mitosis, and apoptosis occurs intermittently. This mechanism is the reason why this AA nephropathy model is kidney‐specific and useful for investigating the mechanism of renal fibrosis. Reference: FEBS Open Bio. 2021 Feb; 11(2): 507–518. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876505/
Solvent mg/mL mM
Solubility
DMSO 18.7 54.71
Note: There can be variations in solubility for the same chemical from different vendors or different batches from the same vendor. The following factors can affect the solubility of the same chemical: solvent used for crystallization, residual solvent content, polymorphism, salt versus free form, degree of hydration, solvent temperature. Please use the solubility data as a reference only. Warming and sonication will facilitate dissolving. Still have questions? Please contact our Technical Support scientists.

Preparing Stock Solutions

The following data is based on the product molecular weight 341.27 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

Recalculate based on batch purity %
Concentration / Solvent Volume / Mass 1 mg 5 mg 10 mg
1 mM 1.15 mL 5.76 mL 11.51 mL
5 mM 0.23 mL 1.15 mL 2.3 mL
10 mM 0.12 mL 0.58 mL 1.15 mL
50 mM 0.02 mL 0.12 mL 0.23 mL
Formulation protocol:
1. Deng HF, Yue LX, Wang NN, Zhou YQ, Zhou W, Liu X, Ni YH, Huang CS, Qiu LZ, Liu H, Tan HL, Tang XL, Wang YG, Ma ZC, Gao Y. Mitochondrial Iron Overload-Mediated Inhibition of Nrf2-HO-1/GPX4 Assisted ALI-Induced Nephrotoxicity. Front Pharmacol. 2021 Jan 21;11:624529. doi: 10.3389/fphar.2020.624529. PMID: 33584308; PMCID: PMC7873870. 2. Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC, Bruno S, Antico F, Brizzi MF, Quesenberry PJ, Camussi G. Mesenchymal Stem Cell Derived Extracellular Vesicles Ameliorate Kidney Injury in Aristolochic Acid Nephropathy. Front Cell Dev Biol. 2020 Mar 24;8:188. doi: 10.3389/fcell.2020.00188. PMID: 32266268; PMCID: PMC7105599. 3. Ishii T, Kumagae T, Wakui H, Urate S, Tanaka S, Abe E, Suzuki T, Yamaji T, Kinguchi S, Kobayashi R, Haruhara K, Nakamura T, Kobayashi S, Tamura K. Tissue xanthine oxidoreductase activity in a mouse model of aristolochic acid nephropathy. FEBS Open Bio. 2021 Feb;11(2):507-518. doi: 10.1002/2211-5463.13083. Epub 2021 Feb 1. PMID: 33448693; PMCID: PMC7876505. 4. Chiou YY, Jiang ST, Ding YS, Cheng YH. Kidney-based in vivo model for drug-induced nephrotoxicity testing. Sci Rep. 2020 Aug 14;10(1):13640. doi: 10.1038/s41598-020-70502-3. PMID: 32796873; PMCID: PMC7428004.
In vitro protocol:
1. Deng HF, Yue LX, Wang NN, Zhou YQ, Zhou W, Liu X, Ni YH, Huang CS, Qiu LZ, Liu H, Tan HL, Tang XL, Wang YG, Ma ZC, Gao Y. Mitochondrial Iron Overload-Mediated Inhibition of Nrf2-HO-1/GPX4 Assisted ALI-Induced Nephrotoxicity. Front Pharmacol. 2021 Jan 21;11:624529. doi: 10.3389/fphar.2020.624529. PMID: 33584308; PMCID: PMC7873870. 2. Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC, Bruno S, Antico F, Brizzi MF, Quesenberry PJ, Camussi G. Mesenchymal Stem Cell Derived Extracellular Vesicles Ameliorate Kidney Injury in Aristolochic Acid Nephropathy. Front Cell Dev Biol. 2020 Mar 24;8:188. doi: 10.3389/fcell.2020.00188. PMID: 32266268; PMCID: PMC7105599.
In vivo protocol:
1. Ishii T, Kumagae T, Wakui H, Urate S, Tanaka S, Abe E, Suzuki T, Yamaji T, Kinguchi S, Kobayashi R, Haruhara K, Nakamura T, Kobayashi S, Tamura K. Tissue xanthine oxidoreductase activity in a mouse model of aristolochic acid nephropathy. FEBS Open Bio. 2021 Feb;11(2):507-518. doi: 10.1002/2211-5463.13083. Epub 2021 Feb 1. PMID: 33448693; PMCID: PMC7876505. 2. Chiou YY, Jiang ST, Ding YS, Cheng YH. Kidney-based in vivo model for drug-induced nephrotoxicity testing. Sci Rep. 2020 Aug 14;10(1):13640. doi: 10.1038/s41598-020-70502-3. PMID: 32796873; PMCID: PMC7428004.
1: Guan T, Huang K, Liu Y, Hou S, Hu C, Li Y, Zhang J, Zhao J, Zhang J, Wang R, Huang Y. Aristolochic acid inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in human umbilical vein endothelial cells. Toxicol Lett. 2019 Jan;300:51-58. doi: 10.1016/j.toxlet.2018.10.022. Epub 2018 Oct 28. PubMed PMID: 30381256. 2: Honarpisheh M, Foresto-Neto O, Steiger S, Kraft F, Koehler P, von Rauchhaupt E, Potempa J, Adamowicz K, Koziel J, Lech M. Aristolochic acid I determine the phenotype and activation of macrophages in acute and chronic kidney disease. Sci Rep. 2018 Aug 15;8(1):12169. doi: 10.1038/s41598-018-30628-x. PubMed PMID: 30111809; PubMed Central PMCID: PMC6093867. 3: Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC, Brizzi MF, Tetta C, Camussi G. Human Liver Stem Cell-Derived Extracellular Vesicles Prevent Aristolochic Acid-Induced Kidney Fibrosis. Front Immunol. 2018 Jul 19;9:1639. doi: 10.3389/fimmu.2018.01639. eCollection 2018. PubMed PMID: 30072992; PubMed Central PMCID: PMC6060249. 4: Marin DE, Pistol GC, Gras M, Palade M, Taranu I. A comparison between the effects of ochratoxin A and aristolochic acid on the inflammation and oxidative stress in the liver and kidney of weanling piglets. Naunyn Schmiedebergs Arch Pharmacol. 2018 Oct;391(10):1147-1156. doi: 10.1007/s00210-018-1538-9. Epub 2018 Jul 22. PubMed PMID: 30033502. 5: Shu H, Ge Y, Xu XY, Guo PQ, Luo ZM, Du W, Chang C, Liu RL, Fu Q. Hybrid-type carbon microcoil-chitosan composite for selective extraction of aristolochic acid I from Aristolochiaceae medicinal plants. J Chromatogr A. 2018 Aug 3;1561:13-19. doi: 10.1016/j.chroma.2018.05.037. Epub 2018 May 18. PubMed PMID: 29803429. 6: Chang MM, Lin CN, Fang CC, Chen M, Liang PI, Li WM, Yeh BW, Cheng HC, Huang BM, Wu WJ, Chen YA. Glycine N-methyltransferase inhibits aristolochic acid nephropathy by increasing CYP3A44 and decreasing NQO1 expression in female mouse hepatocytes. Sci Rep. 2018 May 3;8(1):6960. doi: 10.1038/s41598-018-22298-6. PubMed PMID: 29725048; PubMed Central PMCID: PMC5934382. 7: Liu X, Cao J, Pan Y, Zhang X. Fermentation of Aristolochia debilis by six different medicinal fungi and identification of aristolochic acid derivates in their products by HPLC-ESI-TOF-MS. Pak J Pharm Sci. 2018 May;31(3):763-768. PubMed PMID: 29716853. 8: Ji X, Feng G, Chen G, Shi T. Lack of correlation between aristolochic acid exposure and hepatocellular carcinoma. Sci China Life Sci. 2018 Jun;61(6):727-728. doi: 10.1007/s11427-018-9288-1. Epub 2018 Apr 20. PubMed PMID: 29700703. 9: Chen CJ, Yang YH, Lin MH, Lee CP, Tsan YT, Lai MN, Yang HY, Ho WC, Chen PC; Health Data Analysis in Taiwan (hDATa) Research Group. Herbal medicine containing aristolochic acid and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. Int J Cancer. 2018 Apr 18. doi: 10.1002/ijc.31544. [Epub ahead of print] PubMed PMID: 29667191. 10: Huang YT, Wu TS, Lu CC, Yu FY, Liu BH. Aristolochic acid I interferes with the expression of BLCAP tumor suppressor gene in human cells. Toxicol Lett. 2018 Jul;291:129-137. doi: 10.1016/j.toxlet.2018.03.032. Epub 2018 Apr 12. PubMed PMID: 29655784. 11: Baudoux T, Husson C, De Prez E, Jadot I, Antoine MH, Nortier JL, Hougardy JM. CD4(+) and CD8(+) T Cells Exert Regulatory Properties During Experimental Acute Aristolochic Acid Nephropathy. Sci Rep. 2018 Mar 28;8(1):5334. doi: 10.1038/s41598-018-23565-2. PubMed PMID: 29593222; PubMed Central PMCID: PMC5871862. 12: Ban TH, Min JW, Seo C, Kim DR, Lee YH, Chung BH, Jeong KH, Lee JW, Kim BS, Lee SH, Choi BS, Han JS, Yang CW. Update of aristolochic acid nephropathy in Korea. Korean J Intern Med. 2018 Sep;33(5):961-969. doi: 10.3904/kjim.2016.288. Epub 2018 Mar 20. PubMed PMID: 29551056; PubMed Central PMCID: PMC6129635. 13: Simões ML, Hockley SL, Schwerdtle T, da Costa GG, Schmeiser HH, Phillips DH, Arlt VM. Erratum to "Gene expression profiles modulated by the human carcinogen aristolochic acid I in human cancer cells and their dependence on TP53" [Toxicol. Appl. Pharmacol. 232(1) (2008) 86-98]. Toxicol Appl Pharmacol. 2018 Apr 1;344:75. doi: 10.1016/j.taap.2018.02.010. Epub 2018 Feb 20. PubMed PMID: 29471084. 14: Gruia AT, Oprean C, Ivan A, Cean A, Cristea M, Draghia L, Damiescu R, Pavlovic NM, Paunescu V, Tatu CA. Balkan endemic nephropathy and aristolochic acid I: an investigation into the role of soil and soil organic matter contamination, as a potential natural exposure pathway. Environ Geochem Health. 2018 Aug;40(4):1437-1448. doi: 10.1007/s10653-017-0065-9. Epub 2017 Dec 29. PubMed PMID: 29288399. 15: Gao Y, Xiao XH, Zhu XX, Liang AH, Zhang BL. [Study and opinion on toxicity of aristolochic acid]. Zhongguo Zhong Yao Za Zhi. 2017 Nov;42(21):4049-4053. doi: 10.19540/j.cnki.cjcmm.2017.0160. Chinese. PubMed PMID: 29271138. 16: Zhong W, Zhang L, Ma J, Shao S, Lin R, Li X, Xiong G, Fang D, Zhou L. Impact of aristolochic acid exposure on oncologic outcomes of upper tract urothelial carcinoma after radical nephroureterectomy. Onco Targets Ther. 2017 Dec 5;10:5775-5782. doi: 10.2147/OTT.S148641. eCollection 2017. PubMed PMID: 29255365; PubMed Central PMCID: PMC5722008. 17: Man YL, Rui HL, Chen YP, Wang GQ, Sun LJ, Cheng H. Aristolochic Acid-Induced Autophagy Promotes Epithelial-to-Myofibroblast Transition in Human Renal Proximal Tubule Epithelial Cells. Evid Based Complement Alternat Med. 2017;2017:9596256. doi: 10.1155/2017/9596256. Epub 2017 Oct 18. PubMed PMID: 29234448; PubMed Central PMCID: PMC5664270. 18: Li J, Zhang M, Mao Y, Li Y, Zhang X, Peng X, Yu F. The potential role of aquaporin 1 on aristolochic acid I induced epithelial mesenchymal transition on HK-2 cells. J Cell Physiol. 2018 Jun;233(6):4919-4925. doi: 10.1002/jcp.26310. Epub 2018 Jan 2. PubMed PMID: 29215709. 19: Chang SY, Weber EJ, Sidorenko VS, Chapron A, Yeung CK, Gao C, Mao Q, Shen D, Wang J, Rosenquist TA, Dickman KG, Neumann T, Grollman AP, Kelly EJ, Himmelfarb J, Eaton DL. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight. 2017 Nov 16;2(22). pii: 95978. doi: 10.1172/jci.insight.95978. [Epub ahead of print] PubMed PMID: 29202460; PubMed Central PMCID: PMC5752374. 20: Martínek V, Bárta F, Hodek P, Frei E, Schmeiser HH, Arlt VM, Stiborová M. Comparison of the oxidation of carcinogenic aristolochic acid I and II by microsomal cytochromes P450 in vitro: experimental and theoretical approaches. Monatsh Chem. 2017;148(11):1971-1981. doi: 10.1007/s00706-017-2014-9. Epub 2017 Jul 26. PubMed PMID: 29104318; PubMed Central PMCID: PMC5653735.